

EV Charge Control

Anwenderhandbuch

Anwenderhandbuch

EV Charge Control - CP-PP-Schnittstelle Elektrofahrzeug - Ladeinfrastruktur zur Integration in Ladeinfrastrukturen

				2013-02-18
Bezeichnung:	UM DE EV Charge Control			
Revision:	02			
Dieses Handbu	ıch ist gültig für:			
Bezeichnung		Revision	Artikel-Nr.	

EV Charge Control

2902802

Bitte beachten Sie folgende Hinweise

Zielgruppe des Handbuchs

Der in diesem Handbuch beschriebene Produktgebrauch richtet sich ausschließlich an

- Elektrofachkräfte oder von Elektrofachkräften unterwiesene Personen, die mit den geltenden Normen und sonstigen Vorschriften zur Elektrotechnik und insbesondere mit den einschlägigen Sicherheitskonzepten vertraut sind.
- qualifizierte Anwendungsprogrammierer und Software-Ingenieure, die mit den einschlägigen Sicherheitskonzepten zur Automatisierungstechnik sowie den geltenden Normen und sonstigen Vorschriften vertraut sind.

Erklärungen zu den verwendeten Symbolen und Signalwörtern

Dieses Symbol kennzeichnet Gefahren, die zu Personenschäden führen können. Beachten Sie alle Hinweise, die mit diesem Hinweis gekennzeichnet sind, um mögliche Personenschäden zu vermeiden.

Es gibt drei verschiedene Gruppen von Personenschäden, die mit einem Signalwort gekennzeichnet sind.

GEFAHR Hinweis auf eine gefährliche Situation, die – wenn sie nicht vermieden wird – einen Personenschaden bis hin zum Tod zur Folge hat.

WARNUNG Hinweis auf eine gefährliche Situation, die – wenn sie nicht vermieden wird – einen Personenschaden bis hin zum Tod zur Folge haben kann.

VORSICHT Hinweis auf eine gefährliche Situation, die – wenn sie nicht vermieden wird – eine Verletzung zur Folge haben kann.

Dieses Symbol mit dem Signalwort **ACHTUNG** und der dazugehörige Text warnen vor Handlungen, die einen Schaden oder eine Fehlfunktion des Gerätes, der Geräteumgebung oder der Hard-/Software zur Folge haben können.

Dieses Symbol und der dazugehörige Text vermitteln zusätzliche Informationen oder verweisen auf weiterführende Informationsquellen.

So erreichen Sie uns

Internet	Aktuelle Informationen zu Produkten von Phoenix Contact und zu unseren Allgemeinen Geschäftsbedingungen finden Sie im Internet unter: phoenixcontact.com.
	Stellen Sie sicher, dass Sie immer mit der aktuellen Dokumentation arbeiten. Diese steht unter der folgenden Adresse zum Download bereit: phoenixcontact.net/products.
Ländervertretungen	Bei Problemen, die Sie mit Hilfe dieser Dokumentation nicht lösen können, wenden Sie sich bitte an Ihre jeweilige Ländervertretung. Die Adresse erfahren Sie unter <u>phoenixcontact.com</u> .
Herausgeber	PHOENIX CONTACT GmbH & Co. KG Flachsmarktstraße 8 32825 Blomberg DEUTSCHLAND
	Wenn Sie Anregungen und Verbesserungsvorschläge zu Inhalt und Gestaltung unseres Handbuchs haben, würden wir uns freuen, wenn Sie uns Ihre Vorschläge zusenden an: tecdoc@phoenixcontact.com

Allgemeine Nutzungsbedingungen für Technische Dokumentation

Phoenix Contact behält sich das Recht vor, die technische Dokumentation und die in den technischen Dokumentationen beschriebenen Produkte jederzeit ohne Vorankündigung zu ändern, zu korrigieren und/oder zu verbessern, soweit dies dem Anwender zumutbar ist. Dies gilt ebenfalls für Änderungen, die dem technischen Fortschritt dienen.

Der Erhalt von technischer Dokumentation (insbesondere von Benutzerdokumentation) begründet keine weitergehende Informationspflicht von Phoenix Contact über etwaige Änderungen der Produkte und/oder technischer Dokumentation. Sie sind dafür eigenverantwortlich, die Eignung und den Einsatzzweck der Produkte in der konkreten Anwendung, insbesondere im Hinblick auf die Befolgung der geltenden Normen und Gesetze, zu überprüfen. Sämtliche der technischen Dokumentation zu entnehmenden Informationen werden ohne jegliche ausdrückliche, konkludente oder stillschweigende Garantie erteilt.

Im Übrigen gelten ausschließlich die Regelungen der jeweils aktuellen Allgemeinen Geschäftsbedingungen von Phoenix Contact, insbesondere für eine etwaige Gewährleistungshaftung.

Dieses Handbuch ist einschließlich aller darin enthaltenen Abbildungen urheberrechtlich geschützt. Jegliche Veränderung des Inhaltes oder eine auszugsweise Veröffentlichung sind nicht erlaubt.

Phoenix Contact behält sich das Recht vor, für die hier verwendeten Produktkennzeichnungen von Phoenix Contact-Produkten eigene Schutzrechte anzumelden. Die Anmeldung von Schutzrechten hierauf durch Dritte ist verboten.

Andere Produktkennzeichnungen können gesetzlich geschützt sein, auch wenn sie nicht als solche markiert sind.

Inhaltsverzeichnis

1	Beschreibung			7
		1.1	Bestelldaten	8
		1.2	Technische Daten	8
		1.3	Sicherheitshinweise	11
2	Aufbau			13
		2.1	Anschlüsse	14
		2.2	Diagnose- und Status-Anzeigen	15
		2.3	Konfigurationsschalter	16
		2.4	Schnittstellen / Schalter	17
		2.5	Blockschaltbild	18
3	Inbetriebnahme			19
		3.1	Einbaulage	19
		3.2	Abmessungen	19
		3.3	Montage auf Tragschiene	20
			3.3.1 Montage	
			3.3.2 Demontage	20
		3.4	Konfiguration	20
4				01
4	Grundlegende Infor	mation		21
		4.1		
		4.2		
		4.3	Fanrzeugstati	
		4.4	Anschluss Ladekabel	
		4.5	Typischer Ladeablauf	
		4.6	Simplified Mode	26
5	Beschaltungen			27
		5.1	Ausgänge	27
		5.2	Eingänge	29
6	Anschlussbeispiele			31
		6.1	Mit Freigabe über digitalen Eingang EN	32
		6.2	Mit Freigabe über Register R10	33
		6.3	Automatisch mit Abfrage der Stromtragfähigkeit des Steckers / Kabels	34
		6.4	Mit Steckerverriegelung	35
		6.5	Mit Steckerverriegelung und Verriegelungsrückmeldung	36

		6.6	Mit Steckerverriegelung und Verriegelungsrückmeldung	37
		6.7	Mit Steckerverriegelung, Verriegelungsrückmeldung und externer Freigabe	38
		6.8	Mit Steckerverriegelung und Verriegelungsrückmeldung	39
		6.9	Mit Steckerverriegelung, Verriegelungsrückmeldung und externer Freigabe	40
7	Ablaufdiagramme La	adevor	gang	41
		7.1	Ladeablauf 1	41
		7.2	Ladeablauf 2	43
		7.3	Ladeablauf 3	45
		7.4	Ladeablauf 4	47
		7.5	Ladeablauf 5	49
		7.6	Ladeablauf 6	51
		7.7	Ladeablauf 7	53
		7.8	Ladeablauf 8	56
		7.9	Ladeablauf 9	58
		7.10	Ladeablauf 10	60
		7.11	Ladeablauf 11	63
8	Webserver			67
		8.1	Verbindung zum Gerät herstellen	67
		8.2	Reiter Status	70
		8.3	Reiter Configuration	74
		8.4	Reiter Network	76
9	MODBUS-Beschreit	oung		79
		9.1	Registerarten	79
		9.2	Registerzuordnung	80
10	Verzeichnisanhang.			83
		10 1	Abbildungsverzeichnis	83

1 Beschreibung

Das EV Charge Control ist ein Schnittstellen-Modul für Steuerungs- und Überwachungsfunktionen beim Laden von Elektrofahrzeugen. Das Modul verfügt über eine Kommunikationsschnittstelle, über die Statusdaten sowie Steuersignale gelesen bzw. geschrieben werden können.

Das Gerät ist für das Laden von Elektrofahrzeugen im Mode 3 gemäß der Norm IEC 61851-1 ausgelegt: Aufladen an einer definierten Ladeinfrastruktur mit einer "ControlPilot" Funktion, die fest an das Stromnetz angeschlossen ist. Das Gerät ist dafür vorgesehen, das Schaltelement zu steuern, mit dem die Verbindung zwischen Stromnetz und Elektrofahrzeug hergestellt wird.

Der ControlPilot (CP) hat unter anderem folgende Funktionen:

- Erkennung der Schutzleiteranbindung
- Übermittlung / Einstellung des Fahrzeugstatus (Fahrzeug angeschlossen, Fahrzeug bereit zum Laden (in verschiedenen Stufen), Fehler)
- Übergabe von Informationen zum maximal verfügbaren Ladestrom an das Fahrzeug über ein PWM-Signal

Das Proximity Signal (PX) erkennt den gesteckten Stecker und anhand einer Widerstandscodierung im Stecker die Stromtragfähigkeit von diesem bzw. dem Kabel.

Mit dem Gerät kann statusabhängig die Verriegelung des Ladesteckers in der Ladestation aktiviert / deaktiviert werden.

Optional kann der Ladevorgang auch über die vorhandene Kommunikationsschnittstelle beeinflusst und überwacht werden.

Merkmale

- ControlPilot-Auswertung und -Ansteuerung
- Überwachung der Schutzerdeverbindung PE
- Auswertung des Proximity Signals
- Ansteuerung des Lade-Schützes und der Verriegelungsaktorik
- Einfache Konfiguration direkt am Gerät oder über einen integrierten Webserver
- Einstellbare Ladestrombegrenzung 6 A ... 80 A
- Parametrierbare automatische Abweisung von Ladekabeln mit geringer Stromtragfähigkeit
- Automatische oder manuelle Verriegelung, sowie Auswahl der Verriegelungsaktoren DC-Motor oder Magnet
- Optionale Rückmeldung der Verriegelung und externe Freigabe als Schaltvoraussetzung
- Integration in Ihre Ladeinfrastruktur durch Ethernet-Schnittstelle (Modbus/TCP)
- Freigabe des Ladevorgangs, Statusabfragen und dynamisches Lastmanagement über den Fernzugriff
- Vier digitale Eingänge
- Vier programmierbare digitale Ausgänge
- Vier Relaisausgänge

1.1 Bestelldaten

Produkte			
Beschreibung	Тур	Artikel-Nr.	VPE
Der EV Charge Control dient zum Laden von Elektrofahrzeugen am 3-Phasen Wechselstromnetz nach IEC 61851-1 Mode 3. Alle dazu notwendigen Steuerungsfunktionen sind integriert. Zusätzli- che Funktionen für unterschiedliche Ladeanwendungen stehen zur Verfügung.	EV Charge Control	2902802	1

Zubehör

Beschreibung	Тур	Artikel-Nr.	VPE
Der EV Charge Lock Release überwacht die 12 V Betriebsspannung des elektromotorischen Aktuators einer Steckerverriegelung, leitet die Ver- und Entriegelungssignale durch und gibt einen Entriege- lungsimpuls an den Aktuator, wenn die Betriebsspannung ausfällt.	EM-EV-CLR-12V	2903246	1

1.2 Technische Daten

Versorgung	
Eingangsnennspannungsbereich	110 V AC 240 V AC
Eingangsspannungsbereich	95 V AC 264 V AC
Stromaufnahme maximal	70 mA
Frequenzbereich	45 Hz 65 Hz

Ethernet-Schnittstelle, 100Base-TX nach	IEEE 802.3u / 10 Base-T nach IEEE 802.3
Anschlussart	RJ45-Buchse
Übertragungsrate	10/100 MBit/s
Übertragungslänge	100 m (mit geschirmter, paarweise verdrillter Datenleitung)
Relais Ausgang C _{1,2} und V _{1,2}	
Schaltleistung maximal	1500 VA
Schaltspannung maximal	250 V AC
Schaltstrom maximal	6 A
Relais Ausgang R _{1,3} und R _{2,4}	
Schaltspannung maximal	30 V AC/DC
Schaltstrom maximal	6 A
Digitaler Ausgang	
Maximaler Ausgangsstrom	0,6 A
Maximale Ausgangsspannung	30 V
Digitaler Eingang	
Eingangsnennspannung	24 V
Eingangsnennstrom	8 mA (bei 24 V)
Eingangsspannungsbereich	-3 V 5 V (Aus)
Eingangsspannungsbereich	15 V 30 V (Ein)

Allgemeine Daten

Schutzart	IP20
Umgebungstemperaturbereich (Betrieb)	-25 °C 60 °C
Umgebungstemperaturbereich (Lagerung / Transport)	-40 °C 85 °C
Luftfeuchtigkeit	30 95 % (nicht kondensierend)
Vibrationsfestigkeit nach EN 60068-2-6 (Betrieb)	10 Hz < f < 57 Hz, 0,35 mm Amplitude
	57 Hz < f < 150 Hz, 5,0 g Beurteilungskriterium A
Vibrationsfestigkeit nach EN 60068-2-6 (Lagerung /	10 Hz < f < 57 Hz, 0,35 mm Amplitude
Transport)	57 Hz < f < 150 Hz, 5,0 g Beurteilungskriterium B
Abmessungen B / H / T	71,6 mm / 61 mm / 90 mm
Gewicht	ca. 230 g
Anschlussdaten	
Anschlussart	Schraubanschluss
Nennquerschnitt	2,5 mm ²
Leiterquerschnitt starr min. / max.	0,2 mm ² 4 mm ²
Leiterquerschnitt flexibel min. / max.	0,2 mm ² 2,5 mm ²
Leiterquerschnitt flexibel m. Aderendhülse ohne Kunst- stoffhülse min. / max.	0,25 mm² 1,5 mm²
Leiterquerschnitt flexibel m. Aderendhülse m. Kunst- stoffhülse min. / max.	0,25 mm² 1,5 mm²
Leiterquerschnitt AWG/kcmil min. / max.	24 12
AWG nach UL/CUL min. / max.	30 12
Konformität / Zulassungen	
CE-konform	
Niederspannungsrichtlinie	2006/95/EG
Funktions - und Sicherheitsprüfung	EN 61010-1
Luft- und Kriechstrecken	EN 50178
Gehäuse Normenkonformität	DIN 43880
Elektrische Ausrüstung von Elektro-Straßenfahrzeugen - Konduktive Ladesysteme für Elektrofahrzeuge - Teil 1: Allgemeine Anforderungen (IEC 61851-1:2010); Deut- sche Fassung EN 61851-1:2011	DIN EN 61851-1 VDE 0122-1:2012-01

Störfestigkeit nach EN 61	000-6-2	
Entladung statischer Elektrizität	EN 61000-4-2	
	Kontaktentladung	±4 kV (Kontaktentladung)
	Luftentladung	±8 kV (Luftentladung)
	Bemerkung	Kriterium A
Elektromagnetisches HF-Feld	EN 61000-4-3	
	Frequenzbereich	80 MHz 1 GHz
	Feldstärke	10 V/m
	Frequenzbereich	1 GHz 3 GHz
	Feldstärke	3 V/m
	Bemerkung	Kriterium A
Schnelle Transienten (Burst)	EN 61000-4-4	
	Netzeingang AC (L, N, PE)	2 kV (Level 3 - unsymmetrisch: Leitung gegen Erde)
	Bemerkung	Kriterium A
	Ausgang	1 kV (Level 3 - unsymmetrisch: Leitung gegen Erde)
	Bemerkung	Kriterium A
Stoßstrombelastungen (Surge)	EN 61000-4-5	
	Netzeingang	2 kV (Level 3 - unsymmetrisch: Leitung gegen Erde) 1 kV (Level 2 - symmetrisch: Leitung gegen Leitung)
	Bemerkung	Kriterium A
Leitungsgeführte Beeinflussung	EN 61000-4-6	
	Frequenzbereich	150 kHz 80 MHz
	Spannung	10 V
	Bemerkung	Kriterium A

Konformität zur EMV-Richtlinie 2004/108/EG

Störaussendung nach EN 61000-6-3

Funkstörstrahlung nach EN 55016-2-3

Klasse B Einsatzgebiet Industrie und Wohnbereich

1.3 Sicherheitshinweise

Beachten Sie folgende Hinweise.

ACHTUNG:

Die Schutzart IP20 (IEC 60529/EN 60529) des Gerätes ist für eine saubere und trockene Umgebung vorgesehen. Setzen Sie das Gerät keiner mechanischen und/oder thermischen Beanspruchung aus, die die beschriebenen Grenzen überschreitet.

VORSICHT:

Die Installation, Bedienung und Wartung ist von elektrotechnisch qualifiziertem Fachpersonal durchzuführen. Befolgen Sie die beschriebenen Installationsanweisungen. Halten Sie die für das Errichten und Betreiben von Ladestationen für Elektrofahrzeuge geltenden Bestimmungen und Sicherheitsvorschriften (auch nationale Sicherheitsvorschriften), sowie die allgemeinen Regeln der Technik ein. Die sicherheitstechnischen Daten sind dieser Packungsbeilage und den Zertifikaten (Konformitätsbewertung, ggf. weitere Approbationen) zu entnehmen.

Öffnen oder Verändern des Gerätes über die Konfiguration hinaus ist nicht zulässig. Reparieren Sie das Gerät nicht selbst, sondern ersetzen Sie es durch ein gleichwertiges Gerät. Reparaturen dürfen nur vom Hersteller vorgenommen werden. Der Hersteller haftet nicht für Schäden aus Zuwiderhandlung.

Entsorgen Sie das Gerät nicht im Hausmüll sondern gemäß den jeweils gültigen nationalen Vorschriften. Die Rückgabe kann auch an Phoenix Contact oder den Hersteller erfolgen. **EV Charge Control**

2 Aufbau

2.1 Anschlüsse

Nr.	Kürzel	Bedeutung	Beschreibung
1	LD	Lock Detection	Digitaler Eingang Rückmeldung Verriegelung, Akti- vierung über Konfig -Schalter 6
2	EN	Enable	Digitaler Eingang Freigabe Ladevorgang, Aktivierung über KonfigSchalter 7
3	24 V	Power	Ausgang mit 24 V DC max. 100 mA
4	ML	Manual Lock	Digitaler Eingang Manuelle Verriegelung, Aktivierung über KonfigSchalter 4 und 9
5	XR	External Release	Digitaler Eingang Systemstatus F / Verfügbarkeit La- destation, Aktivierung über KonfigSchalter 8
6	GND	Ground	Systemerde, verbunden mit der Schutzerde
7	ER	Error	Digitaler programmierbarer Ausgang Default: Wird gesetzt, wenn Fehler auftreten Fehler oder Status E oder Status F
8	LR	Locking Re- quest	Digitaler programmierbarer Ausgang Default: Wird gesetzt, solange die Verriegelung aktiv sein soll
9	VR	Vehicle Ready	Digitaler programmierbarer Ausgang Default: Wird gesetzt, wenn das Fahrzeug bereit ist (Status C oder D)
10	GND	Ground	Systemerde, verbunden mit der Schutzerde
11	CR	Charger Ready	Digitaler programmierbarer Ausgang Default: Wird gesetzt, wenn PWM eingeschaltet ist
12	24 Va	Power	Speiseeingang der Ausgänge mit 24 V DC
13	А	Reserviert	Reserviert
14	В	Reserviert	Reserviert
15	PE	Protective Earth	Schutzerde
16	Ν	Neutral	Neutralleiter Stromnetz
17	L	Line	Phase Stromnetz 110 V AC 240 V AC (L-N)
26	PX	Proximity	Prüfsignal für die Stromtragfähigkeit der angesteck- ten Stecker und Kabel gemäß IEC 61851-1
27, 30, 29, 31	R1-R3, R2-R4	Retaining	Relaisausgang Verriegelung, Konfiguration über Kon- figSchalter 4 und 5
28	СР	ControlPilot	Interfacesignal für die Kommunikation zwischen La- desäule und Fahrzeug (IEC 61851-1)
32, 33	V1-V2	Ventilation ¹	Relaisausgang Ventilator: Kann einen Ventilator ein- schalten, wenn Status D erreicht ist und die freigege- benen Eingänge und Register aktiv sind.
34, 35	C1-C2	Contactor	Relaisausgang Schütz: Schaltet die Netzspannung über ein externes Schütz auf das Fahrzeug, wenn Status C oder D erreicht ist und die freigegebenen Eingänge und Register aktiv sind.

¹ Die Belüftung wird nicht überwacht.

Weitere Informationen finden Sie in "Ablaufdiagramme Ladevorgang" auf Seite 41.

2.2	Diagnose- und Status-Anzeigen
-----	-------------------------------

Nr.	Name	Farbe	Status	Beschreibung
20	Power	Grün	Leuchtet	Versorgungsspannung vorhanden
			Blinkt (2 Hz)	System läuft
21	Error	Rot	leuchtet	Fehler (Status E oder F)
22	Connect	Gelb	Leuchtet	Stecker verriegelt
			Blinkt (2 Hz)	Stecker gesteckt
23	Ready	Grün	Leuchtet	Fahrzeug wird geladen (Schütz zwischen Netz und Fahrzeug angesteuert)
			Blinkt (2 Hz)	Fahrzeug bereit (Status C oder D)

2.3 Konfigurationsschalter

Nr.	DIP#	Name	Beschreibung
19	1	PX-Abfrage	ON: PX-Abfrage, Case B, Ladekabel mit Stecker an der La- dekonsole OFF: keine PX-Abfrage, Case C, Ladekabel fest ange- schlossen
19	2	PX-Auswertung	ON: Stecker/Kabel mit geringer Stromtragfähigkeit abwei- sen OFF: Stecker/Kabel mit geringer Stromtragfähigkeit zulas- sen
19	3	PX-Auswahl	Nur relevant, wenn 2 = ON ON: 13 A Stecker/Kabel abweisen OFF: 13 A und 20 A Stecker/Kabel abweisen
19	4	Verriegelung	ON: Verriegelung ausführen OFF: Verriegelung nicht ausführen
19	5	Verriegelungs- option (R4 auf 0 V, R3 auf ≤24 V)	Nur relevant, wenn 4 = ON ON: Verriegelungsmechanismus Option 1 DC-Motor: Der Verriegelungsmotor wird kurzzeitig einge- schaltet. Für die Verriegelung R1 auf \leq 24 V (R2 bleibt auf 0 V) und für die Entriegelung R2 auf \leq 24 V (R1 bleibt auf 0 V) OFF: Verriegelungsmechanismus Option 0 Hubmagnet: R1-R3 wird solange angesteuert (R1 auf \leq 24 V), wie die Verriegelung erforderlich ist, R2-R4 bleibt die ganze Zeit im Grundstatus (R2 auf 0 V)
19	6	Verriegelung Rückmeldung	ON: Rückmeldung Verriegelung an Eingang LD auswerten OFF: Rückmeldung Verriegelung an Eingang LD nicht aus- werten
19	7	Freigabe Lade- vorgang	ON: Freigabe Ladevorgang Eingang EN auswerten OFF: Freigabe Ladevorgang Eingang EN nicht auswerten
19	8	Verfügbarkeit Ladestation	ON: Verfügbarkeit Ladestation Eingang XR auswerten OFF: Verfügbarkeit Ladestation Eingang XR nicht auswerten
19	9	Manuelle Ver- riegelung	ON: Manuelle Verriegelung Eingang ML auswerten OFF: Manuelle Verriegelung Eingang ML nicht auswerten
19	10	Freigabe über ETH (25)	ON: Freigabebit in Modbus-Register auswerten OFF: Freigabebit in Modbus-Register nicht auswerten

Weitere Informationen zur Konfiguration finden Sie in "Ablaufdiagramme Ladevorgang" auf Seite 41.

2.4 Schnittstellen / Schalter

Nr.	Name	Beschreibung
18	Reset	Einmaliges Drücken des Reset-Tasters startet das System neu, setzt alle Ausgänge in den Grundstatus und beginnt erneut die Auswertung der Eingänge. Gedrückthalten des Reset-Tasters für mehr als 10 Sekunden setzt alle Systemvariablen zurück, die über den Webserver oder die Modbus-Schnittstelle geändert wurden, inklusive der Kommunika- tionseinstellungen für die Verbindung über ETH (25).
24	Preset Charge Current	Auswahlschalter zur Einstellung eines Default / Maximal-Wertes für das PWM-Signal auf CP beim Start und im Fall, dass keine externe Kommunikation vorgesehen ist. Definierte Werte: Dig, 6 A, 10 A, 13 A, 16 A, 20 A, 32 A, 63 A, 70 A, 80 A "Dig" zeigt an, dass ausschließlich digitale Kommunikation gefor- dert ist.
25	ETH	Kommunikationsschnittstelle (Ethernet / Webserver / Modbus TCP)

2.5 Blockschaltbild

Bild 2-2 Prinzipaufbau

3 Inbetriebnahme

3.1 Einbaulage

Die Einbaulage ist beliebig.

3.2 Abmessungen

3.3.1 Montage

- 1. Setzen Sie das Gerät von oben auf die Tragschiene.
- 2. Drücken Sie das Gerät an der Front in Richtung der Montagefläche bis es hörbar einrastet.

3.3.2 Demontage

- 1. Ziehen Sie mit einem Schraubendreher, Spitzzange o.ä. die Arretierungslasche nach unten.
- 2. Winkeln Sie die Unterkante des Gerätes etwas von der Montagefläche ab.
- 3. Ziehen Sie das Gerät schräg nach oben von der Tragschiene ab.

3.3.3 Anschluss der Versorgungsspannung

Speisen Sie die Versorgungsspannung über die Klemmen 16 (N), 17 (L) und 15 (PE) in das Gerät ein.

3.4 Konfiguration

Drehschalter Preset Charge Current (24): Stellen Sie den Wert des Default- bzw. Maximalstroms so ein, dass die Anschlussleitungen zur Ladestation und die interne Verdrahtung nicht überlastet wird. Bedenken Sie, dass der eingestellte maximale Stromwert über viele Stunden auftreten kann. Erfolgt die Vorgabe des Ladestroms über die digitale Kommunikation (Einstellung "Dig"), sollten Sie darauf achten, dass dem Fahrzeug über die serielle Kommunikation kein höherer Strom übermittelt wird, als der durch die Installation zulässige Maximalstrom.

Konfigurationsschalter (19) DIP 1 ... 10: Weitere Informationen zur Konfiguration finden Sie in "Anschlussbeispiele" auf Seite 31 und "Ablaufdiagramme Ladevorgang" auf Seite 41.

Web-Oberfläche: Informationen zur Konfiguration und Statusabfrage des Webservers finden Sie in "Webserver" auf Seite 67.

4 Grundlegende Informationen

4.1 Proximity Plug / Signal PX

Die Stromtragfähigkeit wird durch den Widerstand Rc gekennzeichnet. Das Gerät misst über das Signal PX (Proximity Plug) den Widerstandswert und ermittelt dadurch die Stromtragfähigkeit des angeschlossenen Steckers und Kabels. Die Codierung des zulässigen Stromes zum Widerstandswert ist in der IEC 61581-1 geregelt.

Widerstandswert Rc nach Norm	Widerstandswert gemessen	Resultierende Stromtragfähigkeit	Registerwert für Webserver und Modbus
-	<75 Ω	Fehler	0XFFFF
100 Ω	75 Ω 150 Ω	63 (70) A	63
220 Ω	150 Ω 330 Ω	32 A	32
680 Ω	330 Ω 1000 Ω	20 A	20
1500 Ω	1000 Ω 2200 Ω	13 A	13
-	>2200 Ω	0 A	0

4.2 ControlPilot / Signal CP

Bild 4-2 Beschaltung ControlPilot

Über das Signal CP (ControlPilot) gibt das Gerät den zulässigen Ladestrom als PWM-Signal codiert an das Fahrzeug. Das Fahrzeug signalisiert über die Spannungshöhe Va den aktuellen Status.

Die Zuordnung der zulässigen Ladestromhöhe zur Pulsweite des PWM - Signales sowie die Zuordnung der Spannungshöhe zu den Zuständen des Fahrzeugs ist in der IEC 61581-1 geregelt (siehe Tabelle in "Typischer Ladeablauf" auf Seite 25).

Fahrzeug- status	Fahrzeug ange- schlossen	S2	Ladevorgang möglich	Va ¹	Beschreibung
A	Nein	Offen	Nein	12 V	$Vb^2 = 0 V$
В	Ja	Offen	Nein	9 V	R2 erkannt
С	Ja	Geschlossen	Fahrzeug bereit	6 V	R3 = 1,3 k Ω ±3% Belüftung nicht erforderlich
D	-			3 V	R3 = 270 $\Omega \pm 3\%$ Belüftung erforderlich
E	Ja	Offen	Nein	0 V	Vb = 0: EVSE, Kurzschluss am EV Charge Control, Spannungsversor- gung nicht verfügbar
F	Ja	Offen	Nein	EVSE nicht verfügbar	EVSE nicht verfügbar

4.3 Fahrzeugstati

¹ Va = gemessene Spannung im EV Charge Control

² Vb = gemessene Spannung im Fahrzeug

4.4 Anschluss Ladekabel

Case	Beschreibung
В	Steckbares Ladekabel
С	Festangeschlossenes Ladekabel

Case B

Das Ladekabel ist nicht Teil der Ladestation.

Bild 4-3 Steckbares Ladekabel - Case B

Case C

Das Ladekabel ist Teil der Ladestation.

4.5 Typischer Ladeablauf

Ist kein Fahrzeug angeschlossen, befindet sich der EV Charge Control im Ausgangsstatus A. Wird nun ein Fahrzeug angeschlossen, sinkt die Spannung am ControlPilot Signal CP auf 9 V. R2 im Fahrzeug ist erkannt, der Status B ist erreicht. Die Spannungshöhe an CP ergibt sich aus der Reihenschaltung des Widerstands R1 im Ladecontroller, der Diode D im Fahrzeug und des Widerstands R2 im Fahrzeug an 12 V. Im Status B wird der Oszillator mit der Pulsweitenmodulation (PWM) eingeschaltet. Die Pulsweite codiert den zulässigen Ladestrom, den das Fahrzeug aus der Ladeinfrastruktur entnehmen darf. Die Codierung ist in der unten stehenden Tabelle dargestellt. Hat das Fahrzeug das PWM-Signal erkannt, schaltet es über den Schalter S2 einen weiteren Widerstand R3 zu R2 parallel. Je nach Widerstandshöhe resultiert daraus die Spannungshöhe 6 V oder 3 V. Der Status C (Belüftung nicht erforderlich) bzw. D (Belüftung erforderlich) ist erreicht. Der Ladecontroller schaltet die Netzspannung über Schütz und Ladekabel auf das Fahrzeug. Der Ladevorgang beginnt.

Schaltet das Fahrzeug über den S2 den Widerstand R3 wieder ab, signalisiert es damit, dass der Ladevorgang beendet ist. Der Status B ist wieder erreicht. Der EV Charge Control schaltet das Schütz wieder ab und damit die Spannung vom Ladekabel. Andersherum kann auch der EV Charge Control dem Fahrzeug signalisieren, dass der Ladevorgang beendet werden soll, indem er das PWM-Signal abschaltet. Wird nun der Ladestecker wieder vom Fahrzeug entfernt, ist der Status A wieder erreicht.

Auswertung der Nenntastverhält- nisse durch das Fahrzeug	Maximaler Strom, der vom Fahrzeug entnommen werden darf
Tastverhältnis < 3 %	Ladevorgang ist nicht erlaubt
3 % ≤ Tastverhältnis≤ 7 %	Zeigt an, dass die digitale Kommunikation benutzt wird, um ein Gleichspannungsla- degerät außerhalb des Fahrzeugs zu steuern oder um den verfügbaren Stromwert an ein Ladegerät innerhalb des Fahrzeugs zu übermitteln. Die digitale Kommunikation kann auch mit anderen Tastverhältnissen verwendet werden. Der Ladevorgang ist nur mit einer digitaler Kommunikation erlaubt. 5 % Tastverhältnis sollte benutzt werden, wenn die Pilot-Leitung für die digitale Kom- munikation benutzt wird.
7 % < Tastverhältnis< 8 %	Ladevorgang ist nicht erlaubt
8 % ≤ Tastverhältnis< 10 %	6 A
10 % ≤ Tastverhältnis≤ 85 %	Verfügbarer Strom = (% Tastverhältnis) x 0,6 A
85 % < Tastverhältnis≤ 96 %	Verfügbarer Strom = (% Tastverhältnis - 64) x 2,5 A

EV Charge Control

Auswertung der Nenntastverhält- nisse durch das Fahrzeug []	Maximaler Strom, der vom Fahrzeug entnommen werden darf	
96 % < Tastverhältnis≤ 97 %	80 A	
Tastverhältnis> 97 %	Ladevorgang ist nicht erlaubt	
Wenn das PWM-Signal zwischen 8 % und 97 % liegt, darf der maximale Strom die Werte, die vom PWM angezeigt werden,		
nicht überschreiten, auch wenn das digitale Signal einen höheren Strom anzeigt.		

4.6 Simplified Mode

Bild 4-6 Beschaltung Simplified ControlPilot

Im Simplified Mode wird der Zwischenstatus B übersprungen. Die zulässige Ladestromhöhe wird auf 16 A begrenzt. Der Widerstandswert Re entspricht der Parallelschaltung der Widerstände R2 und R3 aus dem Bild 4-2. Auch im Simplified Mode kann der Status C oder D erreicht werden.

5 Beschaltungen

Die Beschaltungen mit Lampen und LEDs sind nur Beispiele, Sie können auch andere Verbraucher (z.B. Optokoppler, Relais oder digitale Eingänge einer Steuerung) anschließen.

5.1 Ausgänge

Die Ausgänge schalten im Status 0 gegen GND und im Status 1 auf den Spannungseingang 24Va. An dem Spannungseingang 24Va muss eine Spannungsversorgung von 24 V DC angelegt werden. Die Stromtragfähigkeit jedes Schalttransistors beträgt maximal 600 mA. Die externe Spannungsversorgung muss an die angeschlossene Leistung angepasst sein.

ACHTUNG: Transistorschaden

In keinem Fall darf eine Versorgungsspannung an die Ausgänge angeschlossen werden, da immer einer der Transistoren angesteuert ist und die Transistoren dadurch zerstört werden.

Transistorbeschaltung der Ausgänge

Anschluss Verbraucher höherer Leistung (z. B. Lampen)

Über den Versorgungseingang V24a werden die Ausgangstufen mit der notwendigen Spannung von 24 V DC versorgt. Die Ausgänge schalten im Status 0 gegen GND und im Status 1 auf 24Va. GND ist intern mit PE verbunden. Beachten Sie die maximale Stromfestigkeit von 600 mA pro Ausgang.

Anschluss Verbraucher mit geringer Stromaufnahme (z. B. LEDs)

Über den Versorgungseingang V24a werden die Ausgangstufen mit der notwendigen Spannung von 24 V DC aus dem Spannungsausgang 24V versorgt. Der Spannungsausgang 24V kann mit maximal 100 mA belastet werden. Die Ausgänge schalten im Status 0 gegen GND und im Status 1 auf 24Va. GND ist intern mit PE verbunden.

5.2 Eingänge

Die Eingänge sind als Spannungsteiler für eine Spannung von -3 V bis +30 V ausgelegt.

Über das Widerstandsnetzwerk fließt ein Strom von ca. 8 mA bei 24 V. Bei einer Spannung von -3 V bis +5 V wird sicher eine logische 0 erkannt. Bei einer Spannung von +15 V bis +30 V wird sicher eine logische 1 erkannt.

Zuordnung der logischen Zustände zu den Spannungen

Die Beschaltung der Eingänge sind nur Beispiele. Die Eingänge mit Schaltern können sowohl von der internen Spannungsquelle gespeist werden als auch von einer externen 24 V-Spannungsquelle, die GND als gemeinsamen Bezugspunkt nutzt. Die Eingänge können auch von einer externen übergeordneten Steuerung mit 24 V-Ausgängen angesteuert werden. Auch hier ist GND als gemeinsamer Bezugspunkt vorzusehen.

6 Anschlussbeispiele

ACHTUNG: Elektrostatische Entladung!

Das Gerät enthält Bauelemente, die durch elektrostatische Entladung beschädigt oder zerstört werden können. Beachten Sie beim Umgang mit dem Gerät die notwendigen Sicherheitsmaßnahmen gegen elektrostatische Entladung (ESD) nach EN 61340-5-1 und IEC 61340-5-1.

6.1 Mit Freigabe über digitalen Eingang EN

Case C: Das Ladekabel ist fest angeschlossen (DIP 1 = OFF).

Ladefreigabe durch den Schalter über den digitalen Eingang EN (DIP 7 = ON).

Der Ladevorgang startet automatisch, wenn der Eingang EN auf 24 V liegt, eine korrekte Verbindung zum Fahrzeug vorliegt und nachdem Status C oder D erkannt wurde.

- a Lastschütz
- b Ladevorgang ermöglichen
- c Stecker an der Ladesäule

6.2 Mit Freigabe über Register R10

Case C: Das Ladekabel ist fest angeschlossen (DIP 1 = OFF).

Ladefreigabe durch einen Schreibzugriff auf das Freigaberegister R10 über die Kommunikationsschnittstelle oder den Webserver.

Der Ladevorgang startet automatisch, wenn im Register R10 eine 1 steht, eine korrekte Verbindung zum Fahrzeug vorliegt und nachdem Status C oder D erkannt wurde.

- a Lastschütz
- c Stecker an der Ladesäule

6.3 Automatisch mit Abfrage der Stromtragfähigkeit des Steckers / Kabels

Case B: Die Stromtragfähigkeit des Kabels und der Stecker werden über den Eingang PX ermittelt (DIP 1 = ON).

- Option A: Ein Ladekabel mit einer Stromtragfähigkeit von 13 A oder 20 A wird abgewiesen (DIP 2 = ON).
- Option B: Ein Ladekabel mit einer Stromtragfähigkeit von 13 A wird abgewiesen (DIP 2 und DIP 3 = ON).

Der Ladevorgang startet automatisch, wenn die Anforderungen bezüglich der Stromtragfähigkeit erfüllt sind (Option A / B), eine korrekte Verbindung zum Fahrzeug vorliegt und nachdem Status C oder D erkannt wurde.

- a Lastschütz
- d Buchse an der Ladesäule

6.4 Mit Steckerverriegelung

Case B: Die Stromtragfähigkeit des Kabels und der Stecker werden über den Eingang PX ermittelt (DIP 1 = ON).

Automatische Verriegelung (DIP 4 = ON) mit Verriegelungsoption 0: Aktor Hubmagnet (DIP 5 = OFF)

Der Ladevorgang startet automatisch, wenn eine korrekte Verbindung zum Fahrzeug vorliegt und nachdem Status C oder D erkannt wurde.

Bild 6-4 Ladevorgang mit Steckerverriegelung

- a Lastschütz
- e Buchse an der Ladesäule mit Hubmagnet-Verriegelung

6.5 Mit Steckerverriegelung und Verriegelungsrückmeldung

Case B: Die Stromtragfähigkeit des Kabels und der Stecker werden über den Eingang PX ermittelt (DIP 1 = ON).

Automatische Verriegelung (DIP 4 = ON) mit Verriegelungsoption 1: Aktor DC-Motor (DIP 5 = ON) und Verriegelungsrückmeldung über den digitalen Eingang LD (DIP 6 = ON)

Die jeweiligen Schaltzeiten des Aktors werden über den Webserver gesetzt (siehe "Reiter Configuration" auf Seite 74).

Der Ladevorgang startet automatisch, wenn am Eingang LD die erforderliche Verriegelung angezeigt wird, eine korrekte Verbindung zum Fahrzeug vorliegt und nachdem Status C oder D erkannt wurde.

a Lastschütz

f Buchse an der Ladesäule mit DC-Motor-Verriegelung und Rückmeldung
6.6 Mit Steckerverriegelung und Verriegelungsrückmeldung

Case B: Die Stromtragfähigkeit des Kabels und der Stecker werden ermittelt (DIP 1 = ON).

Automatische Verriegelung (DIP 4 = ON) mit Verriegelungsoption 1: Aktor DC-Motor (DIP 5 = ON) und Verriegelungsrückmeldung über den digitalen Eingang LD (DIP 6 = ON)

Die jeweiligen Schaltzeiten des Aktors werden über den Webserver gesetzt (siehe "Reiter Configuration" auf Seite 74).

Ladefreigabe durch externe Steuerung (DIP 7 = ON) und Fehlermeldung an externe Steuerung über den digitalen Ausgang ER.

Der Ladevorgang startet automatisch, wenn ein gültiges Ladekabel erkannt worden ist, der Eingang EN auf 24 V liegt, am Eingang LD die erforderliche Verriegelung angezeigt wird, eine korrekte Verbindung zum Fahrzeug vorliegt und nachdem Status C oder D erkannt wurde.

a Lastschütz

f Buchse an der Ladesäule mit DC-Motor-Verriegelung und Rückmeldung

6.7 Mit Steckerverriegelung, Verriegelungsrückmeldung und externer Freigabe

Case B: Die Stromtragfähigkeit des Kabels und der Stecker werden ermittelt (DIP 1 = ON).

Manuelle Verriegelung (DIP 4 und DIP 9= ON) über den Taster am digitalen Eingang ML mit Verriegelungsoption 1: Aktor DC-Motor (DIP 5 = ON) und Verriegelungsrückmeldung über den digitalen Eingang LD (DIP 6 = ON)

Die jeweiligen Schaltzeiten des Aktors werden über den Webserver gesetzt (siehe "Reiter Configuration" auf Seite 74). Ladefreigabe durch den Schalter über digitalen Eingang EN (DIP 7 = ON). Durch Impulse von mindestens 200 ms am digitalen Eingang ML wird der Stecker ver- bzw. entriegelt.

Der Ladevorgang startet automatisch, wenn der Eingang EN auf 24 V liegt, am Eingang LD die Verriegelung angezeigt wird, eine korrekte Verbindung zum Fahrzeug vorliegt und nachdem Status C oder D erkannt wurde.

Bild 6-7 Ladevorgang mit Steckerverriegelung, Verriegelungsrückmeldung und externer Freigabe

- a Lastschütz
- b Ladevorgang ermöglichen
- f Buchse an der Ladesäule mit Elektromotor-Verriegelung und Rückmeldung
- g Taster

6.8 Mit Steckerverriegelung und Verriegelungsrückmeldung

Case B: Die Stromtragfähigkeit des Kabels und der Stecker werden über den Eingang PX ermittelt (DIP 1 = ON).

Automatische Verriegelung (DIP 4 = ON) mit Verriegelungsoption 0: Aktor Hubmagnet (DIP 5 = OFF) und Verriegelungsrückmeldung über den digitalen Eingang LD (DIP 6 = ON)

Der Ladevorgang startet automatisch, wenn am Eingang LD die Verriegelung angezeigt wird, eine korrekte Verbindung zum Fahrzeug vorliegt und nachdem Status C oder D erkannt wurde.

- a Lastschütz
- e Buchse an der Ladesäule mit Hubmagnet-Verriegelung

6.9 Mit Steckerverriegelung, Verriegelungsrückmeldung und externer Freigabe

Case B: Die Stromtragfähigkeit des Kabels und der Stecker werden ermittelt (DIP 1 = ON).

Automatische Verriegelung (DIP 4 = ON) mit Verriegelungsoption 1: Aktor DC-Motor (DIP 5 = ON) und Verriegelungsrückmeldung über den digitalen Eingang LD (DIP 6 = ON)

Die jeweiligen Schaltzeiten des Aktors werden über den Webserver gesetzt (siehe "Reiter Configuration" auf Seite 74).

Ladefreigabe durch den Schalter über digitalen Eingang EN (DIP 7 = ON)

Der Ladevorgang startet automatisch, wenn der Eingang EN auf 24 V liegt, am Eingang LD die Verriegelung angezeigt wird, eine korrekte Verbindung zum Fahrzeug vorliegt und nachdem Status C oder D erkannt wurde.

Bild 6-9 Ladevorgang mit Steckerverriegelung, Verriegelungsrückmeldung und externer Freigabe

- a Lastschütz
- b Ladevorgang ermöglichen
- f Buchse an der Ladesäule mit Elektromotor-Verriegelung und Rückmeldung

7 Ablaufdiagramme Ladevorgang

7.1 Ladeablauf 1

Im Grundmodus "Case C" mit Status C und Status D

Wird das System eingeschaltet, leuchtet die LED PW (Power) konstant. Ist das System initialisiert, blinkt die LED PW (Power) mit 2 Hz. Der Grundstatus A ist erreicht. Alle Ausgänge stehen auf 0. Keines der Relais ist gesetzt. Es wird sofort mit der Auswertung der Eingänge begonnen.

S1	Status B: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) erkannt. Die Spannung an CP sinkt auf 9 V, das PWM - Signal zeigt dem Fahrzeug den maximal zuläs- sigen Ladestrom an. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED CN (Connect) blinkt mit einer Frequenz von 2 Hz.
S2	Status C: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPi- lot" auf Seite 22) ein, die Spannung an CP sinkt auf 6 V. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Die LED RD (Ready) leuchtet konstant. Die Relaiskontakte C1 und C2 werden geschlossen. Der Ladevorgang wird gestar- tet.
S3	Status B: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED RD (Ready) leuchtet nicht mehr. Die Relaiskon- takte C1 und C2 werden wieder geöffnet.
S4	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Das PWM - Signal wird abgeschaltet. Die Spannung an CP steigt wieder auf den Leerlaufwert von 12 V. Der digitale Ausgang CR wird gelöscht. Die LED CN geht aus. Das Gerät ist wieder im Grundstatus.
S5	Status B: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) erkannt. Die Spannung an CP sinkt auf 9 V, das PWM - Signal zeigt dem Fahrzeug den maximal zuläs- sigen Ladestrom an. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED CN (Connect) blinkt mit einer Frequenz von 2 Hz.
S6	Status D: Das Elektrofahrzeug schaltet den S2 ein, die Spannung an CP sinkt auf 3 V. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Die LED RD (Ready) leuchtet konstant. Die Relaiskontakte C1 und C2 werden geschlossen. Die Relaiskontakte V1 und V2 werden ebenfalls geschlossen.
S7	Status B: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED RD (Ready) leuchtet nicht mehr. Die Relaiskon- takte C1 und C2 sowie V1 und V2 werden wieder geöffnet.
S8	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Das PWM - Signal wird abgeschaltet. Die Spannung an CP steigt wieder auf den Leerlaufwert von 12 V. Der digitale Ausgang CR wird gelöscht. Die LED CN geht aus. Das Gerät ist wieder im Grundstatus.

7.2 Ladeablauf 2

Mit PX Abfrage, "Case B", Ladekabel mit Stecker (DIP 1)

DIP 1 = ON: Die Stromtragfähigkeit des Ladekabels / Steckers wird über den Proximity Plug und die passende Widerstandsbeschaltung im Stecker ermittelt (siehe "Beschaltung Proximity Plug" auf Seite 21). Sollte am BCD-Schalter ein höherer Strom eingestellt sein als durch den Proximity Plug erkannt, begrenzt in dieser Einstellung der Proximity-Wert den Strom, sodass das Kabel oder der Stecker nicht überlastet werden kann.

S1	Status E: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) erkannt. Die Spannung an CP sinkt auf 9 V, es wird kein PWM - Signal erzeugt, weil der Eingang PX einen offenen Anschluss erkennt. Im Ladestecker wird kein Proximity Plug er- kannt, bzw. kein passender Widerstandswert. Der digitale Ausgang ER (Error) wird gesetzt. Die LED ER (Error) leuchtet konstant.
S2	Status E: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPi- lot" auf Seite 22) ein, die Spannung an CP sinkt auf 6 V. Es gibt keine Verände- rungen an den Ausgängen und LEDs.
S3	Status E: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Es gibt keine Veränderungen an den Ausgängen und LEDs.
S4	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Der digitale Ausgang ER (Error) wird gelöscht. Die LED ER (Error) wird ausgeschaltet. Das Gerät ist wieder im Grundstatus.
S5	Status A: Das Ladekabel ist mit dem Gerät verbunden. Der Widerstandswert von 680 Ohm wird am Proximity Plug erkannt. Dieser Wert signalisiert dem Ge- rät, dass das Kabel bzw. der Stecker eine Stromtragfähigkeit von 20 A besitzt.
S6	Status B: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) erkannt. Die Spannung an CP sinkt auf 9 V, das PWM - Signal zeigt dem Fahrzeug den maximal zuläs- sigen Ladestrom an. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED CN (Connect) blinkt mit einer Frequenz von 2 Hz.
S7	Status C: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPi- lot" auf Seite 22) ein, die Spannung an CP sinkt auf 6 V. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Die LED RD (Ready) leuchtet konstant. Die Relaiskontakte C1 und C2 werden geschlossen.
S8	Status B: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED RD (Ready) leuchtet nicht mehr. Die Relaiskon- takte C1 und C2 werden wieder geöffnet.
S9	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Das PWM - Signal wird abgeschaltet. Die Spannung an CP steigt wieder auf den Leerlaufwert von 12 V. Der digitale Ausgang CR wird gelöscht. Die LED CN geht aus. Das Gerät ist wieder im Grundstatus.
S10	Status A: Das Ladekabel wurde von der Ladesäule entfernt. Der Proximity Plug erkennt einen offenen Eingang. Das System befindet sich wieder im Grundstatus.

7.3 Ladeablauf 3

Mit PX Abfrage, "Case B", Ladekabel mit Stecker (DIP 1) und PX Auswertung (DIP 2), Stecker mit geringer Stromtragfähigkeit abweisen, 13 A und 20 A (DIP 3)

DIP 1 = ON: Die Stromtragfähigkeit des Ladekabels / Steckers wird über den Proximity Plug und die passende Widerstandsbeschaltung im Stecker ermittelt (siehe "Beschaltung Proximity Plug" auf Seite 21). Sollte am BCD-Schalter ein höherer Strom eingestellt sein als durch den Proximity Plug erkannt, begrenzt in dieser Einstellung der Proximity-Wert den Strom, sodass das Kabel oder der Stecker nicht überlastet werden kann.

DIP 2 = ON: Stecker/Kabel mit zu geringer Stromtragfähigkeit werden abgewiesen. Das heißt, dass bei Werten, die unter den Grenzwerten liegen, ein Fehler ausgestellt wird und das Laden nicht gestartet werden kann.

DIP 3 = OFF: Es werden Stromtragfähigkeiten von unter 32 A abgewiesen (13 A und 20 A).

DIP 3 = ON: Es werden Stromtragfähigkeiten von unter 20 A abgewiesen (13 A).

S1	Status E: Das Ladekabel ist mit dem Gerät verbunden. Der Widerstandswert von 680 Ohm wird am Proximity Plug erkannt. Dieser Wert signalisiert dem Ge- rät, dass das Kabel bzw. der Stecker eine Stromtragfähigkeit von 20 A besitzt. Der digitale Ausgang ER (Error) wird gesetzt. Die LED ER (Error) leuchtet kon- stant.
S2	Status E: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) erkannt. Die Spannung an CP sinkt auf 9 V, es wird kein PWM - Signal erzeugt, weil der Eingang PX einen zu geringen Wert erkennt. Im Ladestecker wird ein Widerstandswert des Proximity Plug erkannt, der über dem zulässigen Wert liegt.
S3	Status E: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPi- lot" auf Seite 22) ein, die Spannung an CP sinkt auf 6 V. Es gibt keine Verände- rungen an den Ausgängen und LEDs.
S4	Status E: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Es gibt keine Veränderungen an den Ausgängen und LEDs.
S5	Status E: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden.
S6	Status A: Das Ladekabel ist nicht mehr mit dem Gerät verbunden. Das Gerät ist wieder im Grundstatus. Der digitale Ausgang ER (Error) wird gelöscht. Die LED ER (Error) wird ausgeschaltet.
S7	Status A: Das Ladekabel ist mit dem Gerät verbunden. Der Widerstandswert von 220 Ohm wird am Proximity Plug erkannt. Dieser Wert signalisiert dem Gerät, dass das Kabel bzw. der Stecker eine Stromtragfähigkeit von 32 A besitzt.
S8	Status B: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) erkannt. Die Spannung an CP sinkt auf 9 V, das PWM - Signal zeigt dem Fahrzeug den maximal zuläs- sigen Ladestrom an. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED CN (Connect) blinkt mit einer Frequenz von 2 Hz.
S9	Status C: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPi- lot" auf Seite 22) ein, die Spannung an CP sinkt auf 6 V. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Die LED RD (Ready) leuchtet konstant. Die Relaiskontakte C1 und C2 werden geschlossen.
S10	Status B: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED RD (Ready) leuchtet nicht mehr. Die Relaiskon- takte C1 und C2 werden wieder geöffnet.
S11	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Das PWM - Signal wird abgeschaltet. Die Spannung an CP steigt wieder auf den Leerlaufwert von 12 V. Der digitale Ausgang CR wird gelöscht. Die LED CN geht aus. Das Gerät ist wieder im Grundstatus.
S12	Status A: Das Ladekabel wurde von der Ladesäule entfernt. Der Proximity Plug erkennt einen offenen Eingang. Das System befindet sich wieder im Grundstatus.

7.4 Ladeablauf 4

"Case B" mit manueller Verriegelung

DIP 4 = ON: Es erfolgt eine Verriegelung.

DIP 9 = ON: Die Verriegelung ist manuell. Mit jedem Impuls an dem digitalen Eingang ML wird die Verriegelung ein- bzw. ausgeschaltet. Der Impuls muss mindestens 200 ms lang sein.

DIP 5 = OFF: Es ist die Verriegelungsoption 0 (Hubmagnet) ausgewählt. Während der Verriegelung wird der Verriegelungsausgang konstant mit Strom versorgt, sodass der Hubmagnet dauernd angezogen ist.

S1	Status A: Das System befindet sich im Grundstatus. Am digitalen Eingang ML wird ein Signalimpuls angelegt. Der digitale Ausgang LR (Locking Request) wird einge- schaltet. Die LED CN (Connect) leuchtet. Die Spannung am Verriegelungsaus- gang R2-R1 wird eingeschaltet.
S2	Status A: Am digitalen Eingang ML wird ein Signalimpuls angelegt. Der digitale Ausgang LR (Locking Request) wird wieder ausgeschaltet. Die LED CN (Connect) leuchtet nicht mehr. Die Spannung am Verriegelungsausgang R2-R1 wird wieder ausgeschaltet.
S3	Status B: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) erkannt. Die Spannung an CP sinkt auf 9 V, es wird kein PWM - Signal erzeugt, weil der Stecker nicht ver- riegelt ist. Die LED CN (Connect) blinkt mit einer Frequenz von 2 Hz.
S4	Status B: Am digitalen Eingang ML wird ein Signalimpuls angelegt. Der digitale Ausgang LR (Locking Request) wird eingeschaltet. Die LED CN (Connect) leuch- tet. Die Spannung am Verriegelungsausgang R2-R1 wird eingeschaltet. Das PWM - Signal zeigt dem Fahrzeug den maximal zulässigen Ladestrom an. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED CN (Connect) blinkt mit einer Frequenz von 2 Hz.
S5	Status C: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPilot" auf Seite 22) ein, die Spannung an CP sinkt auf 6 V. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Die LED RD (Ready) leuchtet konstant. Die Relais- kontakte C1 und C2 werden geschlossen.
S6	Status C: Am digitalen Eingang ML wird ein Signalimpuls angelegt. Der digitale Ausgang LR (Locking Request) wird wieder ausgeschaltet. Der digitale Ausgang CR (Charger Ready) wird wieder ausgeschaltet. Die LED CN (Connect) blinkt wieder mit 2 Hz. Die Spannung am Verriegelungsausgang R2-R1 wird wieder aus- geschaltet.
S7	Status C: Nach einer Wartezeit von maximal 3 s werden die Relaiskontakte C1 und C2 wieder geöffnet. Der digitale Ausgang VR (Vehicle Ready) wird wieder zu- rückgesetzt. Die LED RD (Ready) blinkt wieder.
S8	Status C: Am digitalen Eingang ML wird ein Signalimpuls angelegt. Das PWM - Si- gnal zeigt dem Fahrzeug wieder den maximal zulässigen Ladestrom an. Der digi- tale Ausgang LR (Locking Request) wird wieder eingeschaltet. Der digitale Aus- gang VR (Vehicle Ready) wird wieder eingeschaltet. Der digitale Ausgang CR (Charger Ready) wird wieder eingeschaltet. Die LED CN (Connect) leuchtet wie- der konstant. Die LED RD (Ready) leuchtet wieder konstant. Die Relaiskontakte C1 und C2 werden wieder geschlossen. Die Spannung am Verriegelungsausgang R2-R1 wird wieder eingeschaltet.
S9	Status B: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED RD (Ready) leuchtet nicht mehr. Die Relaiskontakte C1 und C2 werden wieder geöffnet.
S10	Status B: Am digitalen Eingang ML wird ein Signalimpuls angelegt. Das PWM - Si- gnal wird abgeschaltet. Der digitale Ausgang LR (Locking Request) wird wieder ausgeschaltet. Der digitale Ausgang CR (Charger Ready) wird wieder ausge- schaltet. Die LED CN (Connect) blinkt wieder mit 2 Hz. Die Spannung am Verrie- gelungsausgang R2-R1 wird wieder ausgeschaltet.
S11	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Die Span- nung an CP steigt wieder auf den Leerlaufwert von 12 V. Die LED CN geht aus. Das Gerät ist wieder im Grundstatus.

7.5 Ladeablauf 5

Im Grundmodus "Case B" mit automatischer Verriegelung (DIP 4) und Verriegelungsmechanismus Option 0

DIP 4 = ON: Es erfolgt eine Verriegelung.

DIP 9 = OFF: Die Verriegelung ist automatisch.

DIP 5 = OFF: Es ist die Verriegelungsoption 0 (Hubmagnet) ausgewählt. Während der Verriegelung wird der Verriegelungsausgang konstant mit Strom versorgt, sodass der Hubmagnet dauernd angezogen ist.

S1	Status B: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) erkannt. Die Spannung an CP sinkt auf 9 V, das PWM - Signal zeigt dem Fahrzeug den maximal zuläs- sigen Ladestrom an. Der digitale Ausgang LR (Locking Request) wird gesetzt. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED CN (Connect) leuchtet konstant. Die Spannung am Verriegelungsausgang R2-R1 wird einge- schaltet.
S2	Status C: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPi- lot" auf Seite 22) ein, die Spannung an CP sinkt auf 6 V. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Die LED RD (Ready) leuchtet konstant. Die Relaiskontakte C1 und C2 werden geschlossen.
S3	Status B: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED RD (Ready) leuchtet nicht mehr. Die Relaiskon- takte C1 und C2 werden wieder geöffnet.
S4	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Das PWM - Signal wird abgeschaltet. Die Spannung an CP steigt wieder auf den Leerlaufwert von 12 V. Der digitale Ausgang CR wird gelöscht. Die LED CN geht aus. Die Spannung am Verriegelungsausgang R2-R1 wird wieder ausge- schaltet. Das Gerät ist wieder im Grundstatus.

7.6 Ladeablauf 6

"Case B" mit automatischer Verriegelung (DIP 4) und Verriegelungsmechanismus Option 1 (Impuls, DIP 5)

DIP 4 = ON: Es erfolgt eine Verriegelung.

DIP 9 = OFF: Die Verriegelung ist automatisch.

DIP 5 = ON: Es ist die Verriegelungsoption 1 (Aktor DC-Motor) ausgewählt. Zur Verriegelung wird ein positiver Impuls am Verriegelungsausgang R2-R1 ausgegeben. Zur Entriegelung wird ein negativer Impuls erzeugt.

S1	Status A: Zur Initialisierungsphase gehört in dieser Einstellung ein Entriege- lungsimpuls am Verriegelungsausgang R2-R1.
S2	Status B: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) erkannt. Die Spannung an CP sinkt auf 9 V. Am Verriegelungsausgang R2-R1 wird ein Verriegelungsim- puls erzeugt. Nachdem der Verriegelungsimpuls abgelaufen ist, zeigt das PWM - Signal dem Fahrzeug den maximal zulässigen Ladestrom an. Der digitale Aus- gang LR (Locking Request) wird gesetzt. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED CN (Connect) leuchtet konstant.
S3	Status C: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPilot" auf Seite 22) ein, die Spannung an CP sinkt auf 6 V. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Die LED RD (Ready) leuchtet konstant. Die Relais- kontakte C1 und C2 werden geschlossen.
S4	Status B: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED RD (Ready) leuchtet nicht mehr. Die Relaiskontakte C1 und C2 werden wieder geöffnet.
S5	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Das PWM - Signal wird abgeschaltet. Die Spannung an CP steigt wieder auf den Leerlaufwert von 12 V. Der digitale Ausgang CR wird gelöscht. Die LED CN (Connect) geht aus. Am Verriegelungsausgang R2-R1 wird ein Entriegelungsim- puls erzeugt. Das Gerät ist wieder im Grundstatus.

7.7 Ladeablauf 7

"Case B" mit automatischer Verriegelung (DIP 4), Verriegelungsmechanismus Option 1 (Impuls, DIP 5) und Verriegelungsrückmeldung (DIP 6)

DIP 4 = ON: Es erfolgt eine Verriegelung.

DIP 9 = OFF: Die Verriegelung ist automatisch.

DIP 5 = ON: Es ist die Verriegelungsoption 1 (Aktor DC-Motor) ausgewählt. Zur Verriegelung wird ein positiver Impuls am Verriegelungsausgang R2-R1 ausgegeben. Zur Entriegelung wird ein negativer Impuls erzeugt (siehe "Prinzipaufbau" auf Seite 18).

DIP 6 = ON: Das System erwartet eine Verriegelungsrückmeldung am digitalen Eingang LD (Lock Detection). Solange die Verriegelung nicht zurückgemeldet wird, versucht das System immer wieder zu verriegeln und es wird ein Fehler gemeldet. Es wird aber weiter versucht zu verriegeln. Dazu wird jeweils ein Verriegelungsimpuls ausgestellt. Ist der nicht erfolgreich, wird ein Entriegelungsimpuls ausgestellt und die Sequenz wiederholt sich. Die Zeiten für die beiden Impulse und die Pause können über den Webserver eingestellt werden.

S1	Status A: Zur Initialisierungsphase gehört in dieser Einstellung ein Entriege- lungsimpuls am Verriegelungsausgang R2-R1.
S2	Status B: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) erkannt. Die Spannung an CP sinkt auf 9 V. Am Verriegelungsausgang R2-R1 wird ein Verriegelungsim- puls erzeugt. Es wird kein PWM - Signal erzeugt, weil der Stecker nicht verriegelt ist. Die LED CN (Connect) blinkt mit einer Frequenz von 2 Hz.
	Nach Ablauf des Verriegelungsimpulses wird der digitale Ausgang LR (Locking Request) gesetzt. Der digitale Eingang LD (Lock Detection) steht noch auf 0. Deshalb wird nun ein Fehler ausgestellt. Der digitale Ausgang ER (Error) wird gesetzt. Die LED ER (Error) wird eingeschaltet. Der Status geht auf E.
S3	Status E: Nach dem Ablauf der Wartezeit (Time between Locking Cycles, siehe 8.3 "Reiter Configuration"Seite 74) wird ein Entriegelungsimpuls am Verriege- lungsausgang R2-R1 erzeugt. Der digitale Ausgang LR (Locking Request) wird gelöscht. Die LED CN (Connect) blinkt weiter
S4	Status E: Der digitale Eingang LD (Lock Detection) steht weiter auf 0. Ein weiterer Verriegelungsimpuls wird erzeugt. Die LED CN (Connect) blinkt weiter.
S5	Status E: Nach Ablauf des Verriegelungsimpulses wird der digitale Ausgang LR (Locking Request) wieder gesetzt.
S6	Status E: Es wird erneut ein Entriegelungsimpuls erzeugt.
S7	Status B: Während des erneuten Verriegelungsimpulses geht der digitale Ein- gang LD (Lock Detection) auf 1. Nach dem Ablauf des Verriegelungsimpulses wird der digitale Ausgang ER (Er- ror) abgeschaltet. Der digitale Ausgang LR (Locking Request) wird eingeschal- tet. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED ER (Error) wird abgeschaltet. Die LED CN (Connect) leuchtet konstant. Das PWM - Signal zeigt dem Fahrzeug den maximal zulässigen Ladestrom an.
S8	Status C: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPilot" auf Seite 22) ein, die Spannung an CP sinkt auf 6 V. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Die LED RD (Ready) leuchtet konstant. Die Relaiskontakte C1 und C2 werden geschlossen.
S9	Status B: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED RD (Ready) leuchtet nicht mehr. Die Relaiskontakte C1 und C2 werden wieder geöffnet.
S10	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Die Spannung an CP steigt wieder auf den Leerlaufwert von 12 V. Der digitale Aus- gang LR (Locking Request) wird abgeschaltet. Der digitale Ausgang CR (Char- ger Ready) wird gelöscht. Die LED CN (Connect) geht aus. Am Verriegelungs- ausgang R2-R1wird ein Entriegelungsimpuls erzeugt. Der digitale Eingang LD (Lock Detection) geht wieder auf Null. Das Gerät ist wieder im Grundstatus. Sollte die Verriegelungsrückmeldung hier nicht korrekt arbeiten und der digitale Eingang LD (Lock Detection) geht nicht wieder auf Null, werden auch hier die Ent- und Verriegelungszyklen wiederholt.

7.8 Ladeablauf 8

"Case B" mit automatischer Verriegelung (DIP 4), Verriegelungsmechanismus Option 0 und Freigabe Ladevorgang in Abhängigkeit vom Eingang EN (DIP 7)

DIP 4 = ON: Es erfolgt eine Verriegelung.

DIP 9 = OFF: Die Verriegelung ist automatisch.

DIP 5 = OFF: Es ist die Verriegelungsoption 0 (Hubmagnet) ausgewählt. Während der Verriegelung wird der Verriegelungsausgang konstant mit Strom versorgt, sodass der Hubmagnet dauernd angezogen ist.

S1	Status B: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) erkannt. Die Spannung an CP sinkt auf 9 V. Es wird kein PWM - Signal erzeugt, weil der digitale Eingang EN (Enable) noch auf 0 steht. Der digitale Ausgang LR (Locking Request) wird gesetzt. Die LED CN (Connect) leuchtet konstant. Die Spannung am Verriege- lungsausgang R2-R1 wird eingeschaltet.
S2	Status C: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPi- lot" auf Seite 22) ein, die Spannung an CP sinkt auf 6 V. Die LED RD (Ready) blinkt mit einer Frequenz von 2 Hz.
S3	Status C: Der digitale Eingang EN (Enable) wird durch einen Schalter oder einer externen Steuerung auf 1 gesetzt. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED RD (Ready) leuchtet konstant. Das PWM - Signal zeigt dem Fahrzeug den maximal zulässigen Ladestrom an. Die Relaiskontakte C1 und C2 werden ein- geschaltet.
S4	Status C: Der digitale Eingang EN (Enable) wird wieder ausgeschaltet. Der di- gitale Ausgang CR (Charger Ready) wird wieder ausgeschaltet. Das PWM - Si- gnal wird abgeschaltet.
S5	Status C: Nach einer Wartezeit von maximal 3 s (interne Festlegung) werden die Relaiskontakte C1 und C2 wieder geöffnet. Der digitale Ausgang VR (Vehicle Ready) wird wieder zurückgesetzt. Die LED RD (Ready) blinkt wieder.
S6	Status C: Der digitale Eingang EN (Enable) wird wieder eingeschaltet. Das PWM - Signal zeigt dem Fahrzeug wieder den maximal zulässigen Ladestrom an. Der digitale Ausgang VR (Vehicle Ready) wird wieder eingeschaltet. Der digitale Ausgang CR (Charger Ready) wird wieder eingeschaltet. Die LED RD (Ready) leuchtet wieder konstant. Die Relaiskontakte C1 und C2 werden wie- der geschlossen.
S7	Status B: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED RD (Ready) leuchtet nicht mehr. Die Relaiskon- takte C1 und C2 werden wieder geöffnet.
S8	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Das PWM - Signal wird abgeschaltet. Die Spannung an CP steigt wieder auf den Leerlaufwert von 12 V. Der digitale Ausgang LR (Locking Request) wird ge- löscht. Der digitale Ausgang CR (Charger Ready)wird gelöscht. Die LED CN (Connect) geht aus. Die Spannung am Verriegelungsausgang R2-R1 wird wieder ausgeschaltet. Das Gerät ist wieder im Grundstatus.

7.9 Ladeablauf 9

"Case B" mit automatischer Verriegelung (DIP 4), Verriegelungsmechanismus Option 0 und Verfügbarkeit Ladestation in Abhängigkeit vom Eingang XR (DIP 8)

DIP 4 = ON: Es erfolgt eine Verriegelung.

DIP 9 = OFF: Die Verriegelung ist automatisch.

DIP 5 = OFF: Es ist die Verriegelungsoption 0 (Hubmagnet) ausgewählt. Während der Verriegelung wird der Verriegelungsausgang konstant mit Strom versorgt, sodass der Hubmagnet dauernd angezogen ist.

DIP 8 = ON: Die Verfügbarkeit des Gerät wird über den digitalen Eingang XR (External Release) gesteuert.

S1	Status F: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Die Spannung an CP ist auf -12 V eingestellt, weil der digitale Eingang XR (Exter- nal Release) nicht durch einen Schalter oder einer externen Steuerung gesetzt ist. Es wird kein PWM - Signal erzeugt. Der digitale Ausgang ER (Error) ist ge- setzt. Die LED ER (Error) leuchtet.
S2	Status F: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPi- lot" auf Seite 22) ein.
S3	Status C: Der digitale Eingang XR (External Release) wurde auf 1 gesetzt. Der digitale Ausgang ER (Error) wird zurück gesetzt. Der digitale Ausgang LR (Locking Request) wird gesetzt. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED ER (Error) wird ausgeschaltet. Die LED CN (Connect) wird eingeschaltet. Die LED RD (Ready) wird eingeschaltet. Das PWM - Signal zeigt dem Fahrzeug den maximal zulässigen Ladestrom an. Die Relaiskontakte C1 und C2 werden ein- geschaltet. Am Verriegelungsausgang R2-R1 wird die Verriegelungsspannung eingeschaltet.
S4	Status C: Der digitale Eingang XR (External Release) wurde gelöscht. Das PWM - Signal auf dem Signal CP wird abgeschaltet. Der digitale Ausgang CR (Charger Ready) wird wieder ausgeschaltet.
S5	Status F: Nach einer Wartezeit von maximal 3 s (interne Festlegung) wird das Signal CP auf -12 V gesetzt. Der digitale Ausgang ER (Error) wird gesetzt. Der digitale Ausgang LR (Locking Request) wird gelöscht. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED ER (Error) wird eingeschaltet. Die LED CN (Connect) wird ausgeschaltet. Die LED RD (Ready) wird ausgeschal- tet. Die Relaiskontakte C1 und C2 werden ausgeschaltet. Am Verriegelungs- ausgang R2-R1 wird die Verriegelungsspannung ausgeschaltet.
S6	Status C: Der digitale Eingang XR (External Release) wurde wieder auf 1 ge- setzt. Der digitale Ausgang ER (Error) wird gelöscht. Der digitale Ausgang LR (Locking Request) wird gesetzt. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED ER (Error) wird ausgeschaltet. Die LED CN (Connect) wird eingeschaltet. Die LED RD (Ready) wird eingeschaltet. Das PWM - Signal zeigt dem Fahrzeug den maximal zulässigen Ladestrom an. Die Relaiskontakte C1 und C2 werden ein- geschaltet. Am Verriegelungsausgang R2-R1 wird die Verriegelungsspannung eingeschaltet.
S7	Status B: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED RD (Ready) leuchtet nicht mehr. Die Relaiskon- takte C1 und C2 werden wieder geöffnet.
S8	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Das PWM - Signal wird abgeschaltet. Die Spannung an CP steigt wieder auf den Leerlaufwert von 12 V. Der digitale Ausgang LR (Locking Request) wird ge- löscht. Der digitale Ausgang CR (Charger Ready) wird gelöscht. Die LED CN (Connect) geht aus. Die Spannung am Verriegelungsausgang R2-R1 wird wieder ausgeschaltet. Das Gerät ist wieder im Grundstatus.
S9	Status F: Die Spannung an CP ist auf -12 V eingestellt, weil der digitale Ein- gang XR (External Release) durch einen Schalter oder einer externen Steue- rung gelöscht ist. Der digitale Ausgang ER (Error) ist gesetzt. Die LED ER (Error) leuchtet.

7.10 Ladeablauf 10

"Case B" mit automatischer Verriegelung (DIP 4), Verriegelungsmechanismus Option 0, Freigabe Ladevorgang in Abhängigkeit vom Eingang EN (DIP 7) und Freigabebit in Register R10 (DIP 10)

DIP 4 = ON: Es erfolgt eine Verriegelung.

DIP 9 = OFF: Die Verriegelung ist automatisch.

DIP 5 = OFF: Es ist die Verriegelungsoption 0 (Hubmagnet) ausgewählt. Während der Verriegelung wird der Verriegelungsausgang konstant mit Strom versorgt, sodass der Hubmagnet dauernd angezogen ist.

DIP 7 = ON: Die Freigabe des Ladevorgangs erfolgt über den digitalen Eingang EN (Enable).

DIP 10 = ON: Die Freigabe des Ladevorgangs erfolgt mit dem Register R10 über einen Ethernet - Zugriff mit Modbus TCP oder über den Webserver. Die beiden Freigabemöglichkeiten sind ODER - verknüpft.

S1	Status B: Der Ladestecker ist in die Ladebuchse des Fahrzeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) erkannt. Die Spannung an CP sinkt auf 9 V. Es wird kein PWM - Signal erzeugt, weil der digitale Eingang EN (Enable) und das Register R10 noch auf 0 stehen. Der digitale Ausgang LR (Locking Request) wird gesetzt. Die LED CN (Connect) leuchtet konstant. Die Spannung am Verriegelungsausgang R2-R1 wird eingeschaltet.
S2	Status C: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPilot" auf Seite 22) ein, die Spannung an CP sinkt auf 6 V. Die LED RD (Ready) blinkt mit einer Frequenz von 2 Hz.
S3	Status C: Das Register R10 wird durch einen Schreibzugriff auf 1 gesetzt. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED RD (Ready) leuchtet konstant. Das PWM - Signal zeigt dem Fahrzeug den maximal zulässigen Ladestrom an. Die Relaiskontakte C1 und C2 werden eingeschaltet.
S4	Status C: Der digitale Eingang EN (Enable) wird durch einen Schalter oder einer externen Steuerung auf 1 gesetzt. Durch die ODER - Verknüpfung ergeben sich keine Veränderungen.
S5	Status C: Das Register R10 wird durch einen Schreibzugriff auf 0 gesetzt. Durch die ODER - Verknüpfung ergeben sich keine Veränderungen.
S6	Status C: Der digitale Eingang EN (Enable) wird wieder ausgeschaltet. Der digi- tale Ausgang CR (Charger Ready) wird wieder ausgeschaltet.
S7	Status C: Nach einer Wartezeit von maximal 3 s (interne Festlegung) werden die Relaiskontakte C1 und C2 wieder geöffnet. Der digitale Ausgang VR (Vehicle Ready) wird wieder zurückgesetzt. Die LED RD (Ready) blinkt wieder.
S8	Status C: Der digitale Eingang EN (Enable) wird wieder eingeschaltet. Das PWM - Signal zeigt dem Fahrzeug wieder den maximal zulässigen Ladestrom an. Der digitale Ausgang VR (Vehicle Ready) wird wieder eingeschaltet. Der digitale Ausgang CR (Charger Ready) wird wieder eingeschaltet. Die LED RD (Ready) leuchtet wieder konstant. Die Relaiskontakte C1 und C2 werden wieder ge- schlossen.
S9	Status B: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED RD (Ready) leuchtet nicht mehr. Die Relaiskontakte C1 und C2 werden wieder geöffnet.
S10	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Das PWM - Signal wird abgeschaltet. Die Spannung an CP steigt wieder auf den Leerlaufwert von 12 V. Der digitale Ausgang LR (Locking Request) wird ge- löscht. Der digitale Ausgang CR (Charger Ready)wird gelöscht. Die LED CN (Connect) geht aus. Die Spannung am Verriegelungsausgang R2-R1 wird wie- der ausgeschaltet. Das Gerät ist wieder im Grundstatus.

7.11 Ladeablauf 11

"Case B", Ladekabel mit Stecker (DIP 1), Stecker mit geringer Stromtragfähigkeit abweisen (DIP 2), Kabel "13 A" abweisen (DIP 3), mit automatischer Verriegelung (DIP 4), Verriegelungsmechanismus Option 1 (Impuls, DIP 5), Rückmeldung Verriegelung am Eingang LD (DIP 6), Freigabe Ladevorgang in Abhängigkeit vom Eingang EN (DIP 7), Verfügbarkeit Ladestation über Eingang XR (DIP 8), Manuelle Verriegelung über Eingang ML (DIP 9) und Freigabebit in Register R10 (DIP 10).

DIP 1 = ON: Die Stromtragfähigkeit des Ladekabels / Steckers wird über den Proximity Plug und die passende Widerstandsbeschaltung im Stecker ermittelt (siehe "Beschaltung Proximity Plug" auf Seite 21). Sollte am BCD-Schalter ein höherer Strom eingestellt sein als durch den Proximity Plug erkannt, begrenzt in dieser Einstellung der Proximity-Wert den Strom, sodass das Kabel oder der Stecker nicht überlastet werden kann.

DIP 2 = ON: Stecker / Kabel mit zu geringer Stromtragfähigkeit werden abgewiesen. Das heißt, dass bei Werten, die unter den Grenzwerten liegen, ein Fehler ausgestellt wird und das Laden nicht gestartet werden kann.

DIP 3 = OFF: Es werden Stromtragfähigkeiten von unter 32 A abgewiesen (13 A und 20 A).

DIP 3 = ON: Es werden Stromtragfähigkeiten von unter 20 A abgewiesen (13 A).

DIP 4 = ON: Es erfolgt eine Verriegelung.

DIP 5 = ON: Es ist die Verriegelungsoption 1 (Aktor DC-Motor) ausgewählt. Zur Verriegelung wird ein positiver Impuls am Verriegelungsausgang R2-R1 ausgegeben. Zur Entriegelung wird ein negativer Impuls erzeugt.

DIP 6 = ON: Das System erwartet eine Verriegelungsrückmeldung am digitalen Eingang LD (Lock Detection). Solange die Verriegelung nicht zurückgemeldet wird, versucht das System immer wieder zu verriegeln. Dazu wird jeweils ein Verriegelungsimpuls ausgesendet. Ist der nicht erfolgreich, wird ein Entriegelungsimpuls ausgesendet und die Sequenz wiederholt sich. Die Zeiten für die beiden Impulse und die Pause können über den Webserver eingestellt werden.

DIP 7 = ON: Die Freigabe des Ladevorgangs erfolgt über den digitalen Eingang EN (Enable).

DIP 8 = ON: Die Verfügbarkeit des Gerätes wird über den digitalen Eingang XR (External Release) gesteuert.

DIP 9 = ON: Die Verriegelung ist manuell. Mit jedem Impuls an dem digitalen Eingang ML wird die Verriegelung ein- bzw. ausgeschaltet. Der Impuls muss mindestens 200 ms lang sein.

DIP 10 = ON: Die Freigabe des Ladevorgangs erfolgt mit dem Register R10 über einen Ethernet - Zugriff mit Modbus TCP oder über den Webserver. Die beiden Freigabemöglichkeiten (EN und R10) sind ODER - verknüpft.

64 PHOENIX CONTACT

S1	Status F: Nach der Initialisierungsphase wird die Spannung an CP auf -12 V ein- gestellt, weil der digitale Eingang XR (External Release) nicht durch einen Schal- ter oder einer externen Steuerung gesetzt ist. Es wird kein PWM - Signal erzeugt. Der digitale Ausgang ER (Error) ist gesetzt. Die LED ER (Error) leuchtet.
S2	Status A: Der digitale Eingang XR (External Release) wurde auf 1 gesetzt. Der digitale Ausgang ER (Error) wird zurück gesetzt. Die LED ER (Error) wird ausgeschaltet.
S3	Status B: Das Ladekabel ist an der Ladesäule angeschlossen. Der Eingang PX (Proximity Plug) erkennt den Widerstandswert von 220 Ohm, der für eine Strom- tragfähigkeit von 32 A steht. Der Ladestecker ist in die Ladebuchse des Fahr- zeugs gesteckt. Das Elektrofahrzeug wird durch das Signal CP (ControlPilot) er- kannt. Die Spannung an CP sinkt auf 9 V, es wird kein PWM - Signal erzeugt, weil der Stecker nicht verriegelt ist. Die LED CN (Connect) blinkt mit einer Frequenz von 2 Hz.
S4	Status C: Das Elektrofahrzeug schaltet den S2 (siehe "Beschaltung ControlPilot" auf Seite 22) ein, die Spannung an CP sinkt auf 6 V. Die LED RD (Ready) blinkt mit einer Frequenz von 2 Hz.
S5	Status C: Am digitalen Eingang ML (Manual Lock) wird durch einen Taster oder eine externen Steuerung ein 0 erzeugt.
S6	Der Verriegelungsimpuls am Verriegelungsausgang R2-R1 ausgestellt.
S7	Die Verriegelungsmechanik meldet über den digitalen Eingang LD (Lock Detec- tion), die korrekte Verriegelung. Der digitale Ausgang LR (Locking Request) wird eingeschaltet. Die LED CN (Connect) leuchtet konstant.
S8	Status C: Der digitale Eingang EN (Enable) wird durch einen Schalter oder einer externen Steuerung auf 1 gesetzt. Das PWM - Signal zeigt dem Fahrzeug den maximal zulässigen Ladestrom an. Der digitale Ausgang VR (Vehicle Ready) wird gesetzt. Der digitale Ausgang CR (Charger Ready) wird gesetzt. Die LED RD (Ready) leuchtet konstant. Die Relaiskontakte C1 und C2 werden einge- schaltet.
S9	Status C: Der digitale Eingang EN (Enable) wird wieder ausgeschaltet. Der digi- tale Ausgang CR (Charger Ready) wird wieder ausgeschaltet. Das PWM - Signal wird abgeschaltet.
S10	Status C: Nach einer Wartezeit von maximal 3 s (interne Festlegung) werden die Relaiskontakte C1 und C2 wieder geöffnet. Der digitale Ausgang VR (Vehicle Ready) wird wieder zurückgesetzt. Die LED RD (Ready) blinkt wieder.
S11	Status C: Der digitale Eingang EN (Enable) wird wieder eingeschaltet. Das PWM - Signal zeigt dem Fahrzeug wieder den maximal zulässigen Ladestrom an. Der digitale Ausgang VR (Vehicle Ready) wird wieder eingeschaltet. Der digitale Ausgang CR (Charger Ready) wird wieder eingeschaltet. Die LED RD (Ready) leuchtet wieder konstant. Die Relaiskontakte C1 und C2 werden wieder ge- schlossen.
S12	Status B: Das Elektrofahrzeug bricht das Laden ab und schaltet den S2 aus. Die Spannung an CP steigt wieder auf 9 V. Der digitale Ausgang VR (Vehicle Ready) wird gelöscht. Die LED RD (Ready) leuchtet nicht mehr. Die Relaiskontakte C1 und C2 werden wieder geöffnet.
S13	Status A: Der Ladestecker ist nicht mehr mit dem Fahrzeug verbunden. Das PWM - Signal wird abgeschaltet. Die Spannung an CP steigt wieder auf den Leerlaufwert von 12 V. Der digitale Ausgang LR (Locking Request) wird ge- löscht. Der digitale Ausgang CR (Charger Ready) wird gelöscht.

EV Charge Control

S14	Am digitalen Eingang ML (Manual Lock) wird durch einen Taster oder eine exter- nen Steuerung ein Impuls erzeugt.
S15	Der Entriegelungsimpuls am Verriegelungsausgang R2-R1 wird ausgestellt. Der digitale Ausgang LR (Locking Request) wird ausgeschaltet. Die LED CN (Connect) wird ausgeschaltet.
S16	Die Verriegelungsmechanik meldet über den digitalen Eingang LD (Lock Detec- tion), dass die Verriegelung nicht besteht.
S17	Das Ladekabel wird von der Ladesäule abgezogen. Der Eingang PX (Proximity Plug) erkennt einen offenen Eingang.

8 Webserver

Die Software ist vorinstalliert.

Sie können folgende Browser zur Konfiguration verwenden:

Browser	Version
Mozilla Firefox	3.6.12
	6.0.2
Microsoft Internet Explorer	6.0.2900

8.1 Verbindung zum Gerät herstellen

Im Auslieferungszustand hat das System den DHCP-Zugriff eingerichtet. Findet das System beim Start keinen DHCP-Server, stellt sich automatisch die voreingestellte IP-Adresse 192.168.0.8 ein.

Wenn ein DHCP - Server gefunden wird, kann das System unter der auf dem Typenschild angegebenen MAC-Adresse gefunden oder unter dem Gerätenamen angesprochen werden, wenn ein DNS-Server zur Verfügung steht. Der voreingestellte Gerätename ist STATION123.

Unter der voreingestellten IP-Adresse können Sie das System erreichen, wenn Sie an Ihrem PC die folgenden Einstellungen vornehmen (Beispielprozedur für Windows XP):

1. Wählen Sie in Ihrem System unter Start > Einstellungen die Netzwerkverbindungen aus.

			72 73 73 73
🛸 Netzwerkverbindungen			
Datei Bearbeiten Ansicht Eavoriten	E <u>x</u> tras <u>E</u> rweitert <u>?</u>		
🔇 Zurück - 🕥 - 🏂 🔎 Suc	nen 🌔 Ordner 🛄 🕶		
Adresse 💊 Netzwerkverbindungen			💌 ラ Wechseln zu
	Name	Тур	Status
Netzwerkaufgaben 🛞	LAN oder Hochgeschwindigkeits	internet	
 Neue Verbindung erstellen Windows-Firewalleinstellungen ändern 	^{((p)} Drahtlose Netzwerkverbindung 3 1394-Verbindung LAN-Verbindung	LAN oder Hochgesch LAN oder Hochgesch LAN oder Hochgesch	Netzwerkadresse bezie Verbindung hergestellt Netzwerkkabel wurde e
Siehe auch 🌸			
 Netzwerkproblembehandlung 			
Andere Orte 🏦			
 Systemsteuerung Netzwerkumgebung Eigene Dateien Arbeitsplatz 			
Details 🄇			
Netzwerkverbindungen Systemordner			
	<		>

Bild 8-1 Netzwerkverbindungen

2. Wählen Sie unter den angebotenen Verbindungen diejenige aus, die mit dem EV Charge Control verbunden ist.

Status vo	n LAN-Verb	oindung 🛛 ?	2
Allgemein Netzwe	rkunterstützung		
-Verbindung			1
Status:		Verbindung hergestellt	
Dauer:		03:10:15	
Übertragungsra	ate:	100,0 MBit/s	
Aktivität	Gesendet —	Empfangen	
Pakete:	41.850	64.492	
Eigenschaften	<u>D</u> eaktivieren		
		<u>S</u> chließe	n
ld 8-2	Status LAN-Ve	erbindung	

3. Klicken Sie auf die Schaltfläche Eigenschaften.

4. Wählen Sie das Internetprotokoll (TCP/IP) aus und klicken Sie auf die Schaltfläche Eigenschaften.

Eigenschaften von Inte	ernetprotoko ? 🔀			
Allgemein				
IP-Einstellungen können automatisch zugewiesen werden, wenn das Netzwerk diese Funktion unterstützt. Wenden Sie sich andernfalls an den Netzwerkadministrator, um die geeigneten IP-Einstellungen zu beziehen.				
O IP-Adresse automatisch beziehen				
Folgende IP- <u>A</u> dresse verwenden				
IP-Adresse:	192.168.0.1			
S <u>u</u> bnetzmaske:	255 . 255 . 255 . 0			
<u>S</u> tandardgateway:	· · ·			
O D <u>N</u> S-Serveradresse automatisch b	peziehen			
Solgende DNS-Serveradressen verwenden:				
Bevorzugter DNS-Server:	· · ·			
Alternativer DNS-Server:	· · ·			
	Erweitert			
	OK Abbrechen			

Bild 8-4 Eigenschaften Internetprotokoll

- Hier können Sie Ihrem PC eine passende IP-Adresse zuweisen, damit Sie mit diesem PC über eine direkte Verbindung zwischen dem PC und dem EV Charge Control auf das Zielsystem zugreifen können.
- Sie können nun über Ihren Browser auf das System zugreifen und es konfigurieren. Geben Sie dazu <u>http://192.168.0.8</u> in die Adressleiste Ihres Browsers ein.

Bild 8-5 Zugriff über Browser

7. Je nach Einstellung und Netzwerk können Sie auch den Gerätenamen oder eine andere von Ihnen über den Browser eingestellte IP-Adresse in die Adressleiste Ihres Browsers eingeben.

8.2 Reiter Status

Um die Änderungen sicher zu übertragen, muss die Bestätigung durch Drücken der "submit"-Schaltfläche innerhalb des Abfragezyklus (10 Sekunden) erfolgen. Ansonsten wird auf die ursprünglich gespeicherten Werte zurückgegriffen.

State E or State F (Error)

~

low submit

ER -

Parameter	Beschreibung
Status acc. IEC61581 (A-F)	Aktueller Status des Fahrzeugs. Mögliche Stati sind "A" bis "F".
Proximity / Current Capa- bility of Cable Assembly (A)	Zeigt die durch das Signal PX (Proximity Plug) ermittelte Stromtragfähigkeit des Kabelsatzes an. Wenn der DIP-Schal- ter 1 nicht eingeschaltet ist, zeigt dieses Feld "NA", weil der Wert dann nicht ermittelt wird.
Actual Charge Current Setting (A /"Digital")	Stellt den tatsächlichen durch das Gerät ermittelten und einge- stellten zulässigen Ladestrom dar. Sie können über das Aus- wahlfenster die zulässigen Stromstärken einzustellen. Die an- gebotenen Stromstärken können durch den BCD-Schalter (24), den Proximity Plug oder den Simplified Mode reduziert sein. Eine Änderung muss mit der Schaltfläche "submit" be- stätigt werden.
Charging Time (hh:mm)	Zeigt die Ladezeit des aktuellen Ladevorgangs an. Der Wert wird bei Beginn eines jeden Ladevorgangs wieder zurückge- setzt.
EN - Enable Charging	Zeigt den Status des digitalen Eingangs EN. "on" steht für eine logische 1 oder 24 V am Eingang, "off" steht für eine logische 0 oder 0 V am Eingang.
XR - External Release, EVSE available	Zeigt den Status des digitalen Eingangs XR. "on" steht für eine logische 1 oder 24 V am Eingang, "off" steht für eine logische 0 oder 0 V am Eingang.
LD - Connector Locking Detection	Zeigt den Status des digitalen Eingangs LD. "locked" steht für eine logische 1 oder 24 V am Eingang, "unlocked" steht für eine logische 0 oder 0 V am Eingang.
ML - Manual Locking / Re- quested Locking Status	Zeigt den Status des digitalen Eingangs ML. "locked" steht für eine logische 1 oder 24 V am Eingang, "unlocked" steht für eine logische 0 oder 0 V am Eingang.
CR	Zeigt den Status des digitalen Ausgangs CR. "high" steht für eine logische 1 oder 24 V am Ausgang, "low" steht für eine lo- gische 0 oder 0 V am Ausgang. Die Zuordnung der Ausgänge zu den auszugebenden Signalen kann durch die Auswahl- fenster programmiert werden. Der Standardwert ist "Charger Ready" (PWM on).

EV Charge Control

Parameter []	Beschreibung
LR	Zeigt den Status des digitalen Ausgangs LR. "high" steht für eine logische 1 oder 24 V am Ausgang, "low" steht für eine lo- gische 0 oder 0 V am Ausgang. Die Zuordnung der Ausgänge zu den auszugebenden Signalen kann durch die Auswahl- fenster programmiert werden. Der Standardwert ist "Connec- tor Lock Request".
VR	Zeigt den Status des digitalen Ausgangs VR. "high" steht für eine logische 1 oder 24 V am Ausgang, "low" steht für eine lo- gische 0 oder 0 V am Ausgang. Die Zuordnung der Ausgänge zu den auszugebenden Signalen kann durch die Auswahl- fenster programmiert werden. Der Standardwert ist "Vehicle Ready (State C or D)".
ER	Zeigt den Status des digitalen Ausgangs ER. "high" steht für eine logische 1 oder 24 V am Ausgang, "low" steht für eine lo- gische 0 oder 0 V am Ausgang. Die Zuordnung der Ausgänge zu den auszugebenden Signalen kann durch die Auswahl- fenster programmiert werden. Der Standardwert ist "Error, Fault Condition (State E or F)".

Sie können folgende Optionen für die Ausgänge mithilfe der Auswahlbox auswählen.

Anzeige im Pull- down-Menü	Ausgang High	Ausgang Low	Standard
State A	Gerät im State A	Gerät im State B - F	
State B	Gerät im State B	Gerät im State A oder C - F	
State B and PWM on	Gerät im State B und PWM EIN	Gerät im State A,C- F oder PWM AUS	
State B and PWM off	Gerät im State B und PWM AUS	Gerät im State A,C- F oder PWM EIN	
State C	Gerät im State C	Gerät im State A- B oder D - F	
State D	Gerät im State D	Gerät im State A - C oder E - F	
State E	Gerät im State E	Gerät im State A - D oder F	
State F	Gerät im State F	Gerät im State A - E	
State A or State B	Gerät im State A oder B	Gerät im State C - F	
State A or State B and PWM on	Gerät im State A oder B und PWM EIN	Gerät im State C-F oder B und PWM AUS	
State A or State B and PWM off	Gerät im State A oder B und PWM AUS	Gerät im State C-F oder B und PWM EIN	
State A or State B or State C	Gerät im State A - C	Gerät im State D - F	
State A or State B or State D	Gerät im State A - B oder D	Gerät im State C oder E - F	
State A or State B or State C or State D	Gerät im State A - D	Gerät im State E - F	
State E or State F (Er- ror)	Gerät im State E - F	Gerät im State A - D	Default für ER
Anzeige im Pull- down-Menü []	Ausgang High	Ausgang Low	Standard
--	--	---	-------------------
State C or D	Gerät im Status C oder D	Gerät im Status A, B, E, F	Default für VR
PWM on	Gerät PWM EIN	Gerät im Status A, PWM AUS, E, F	Default für CR
Valid ProximityPlug	Zulässiger PX-Wert erkannt	Unzulässiger PX-Wert erkannt	
Invalid ProximityPlug	Unzulässiger PX-Wert er- kannt	Zulässiger PX-Wert erkannt	
13A at ProximityPlug	13 A Stecker an PX erkannt	Bei allen anderen Werten AUS	
20A at ProximityPlug	20 A Stecker an PX erkannt	Bei allen anderen Werten AUS	
32A at ProximityPlug	32 A Stecker an PX erkannt	Bei allen anderen Werten AUS	
63A at ProximityPlug	63 A Stecker an PX erkannt	Bei allen anderen Werten AUS	
13A or 20A at Proximi- tyPlug	13 A oder 20 A Stecker an PX erkannt	Bei allen anderen Werten AUS	
13A or 20A or 32A at ProximityPlug	13 A oder 20A oder 32A Stecker an PX erkannt	Bei allen anderen Werten AUS	
Rejected plug with low current carrying capa- city	Gerät lehnt das Laden des EV aufgrund unzureichen- der Stromtragfähigkeit des Ladekabels ab	Bei allen anderen PP Werten AUS	
Contactor C1C2 on	Gerät schaltet das Relais "Ladeschütz" EIN	Sonst AUS	
Ventilation V1V2 on	Gerät schaltet das Relais "Ventilator" EIN	Sonst AUS	
Locking request	Verriegelung ist aktiv	Verriegelung nicht aktiv	Default für LR
Register Output1	Das Register "Output1" wurde über Modbus ge- setzt (Logisch 1)	Das Register "Output1" wurde über Modbus ge- löscht	
Register Output2	Das Register "Output2" wurde über Modbus ge- setzt (Logisch 1)	Das Register "Output2" wurde über Modbus ge- löscht	
Register Output3	Das Register "Output3" wurde über Modbus ge- setzt (Logisch 1)	Das Register "Output3" wurde über Modbus ge- löscht	
Register Output4	Das Register "Output4" wurde über Modbus ge- setzt (Logisch 1)	Das Register "Output4" wurde über Modbus ge- löscht	

8.3 Reiter Configuration

Um die Änderungen sicher zu übertragen, muss die Bestätigung durch Drücken der "submit"-Schaltfläche innerhalb des Abfragezyklus (10 Sekunden) erfolgen. Ansonsten wird auf die ursprünglich gespeicherten Werte zurückgegriffen.

Firmware Version: 1.0.8

Bild 8-7 Weboberfläche "Configuration"

Parameter	Beschreibung
Preset Charge Current (A / "Digital")	Hier wird der maximal zulässige Ladestrom angezeigt, der über den BCD-Schalter an der Front des Gerätes einstellt ist.
DIP-Switch Configuration	Hier werden die Einstellungen des Gerätes dargestellt, wie sie an der Front des Gerätes mit den DIP-Schaltern eingestellt sind (siehe Position 19 in "Funktionselemente" auf Seite 13).
D1 Proximity Detection	Abfrage des Proximity Plugs auswählen
D2 Reject Cable Assembly	Auswertung der Stromtragfähigkeit auswählen (nur, wenn DIP 1 auf ON steht)
D3 Reject Cable Assem- bly rated 20A / 13A	Auswahl der Stromtragfähigkeit ≤20 A oder ≤13 A (nur, wenn DIP1 auf ON steht)

Parameter []	Beschreibung
D4 Connector locking	Verriegelungsfunktion auswählen
D5 Locking Actor Power Supply (pulsed/ perma- nent)	Verriegelungsoption auswählen (nur, wenn DIP 4 auf ON steht)
D6 High Signal at LD for Charging Release	Verriegelung Rückmeldung (nur, wenn DIP 4 auf ON steht)
D7 High signal at EN for Charging Release	Freigabefunktion Ladevorgang auswählen
D8 High signal at XR for Charging Release	Verfügbarkeit Ladestation auswählen
D9 Manual lock/unlock function at LD	Option manuelle Verriegelung auswählen (nur, wenn DIP 4 auf ON steht)
D10 Register Enable	Freigabefunktion über Register R10 auswählen
Charging & External Re- lease	Die Freigabe kann über Modbus oder den Webserver erfolgen.
Locking Actor Timing (for Pulsed Locking only)	Hier können Sie die Zeiten einstellen, die das System für die Signale des Verriegelungsausgangs benutzt, wenn die Verrie- gelungsoption gepulst eingestellt ist.
Pulse Duration for Lo-	Zeitdauer des Verriegelungsimpulses
cking(0.5s Default, max. 3s)	Eine Änderung muss mit der Schaltfläche "submit" bestätigt werden.
Pulse Duration for Unlo-	Zeitdauer des Entriegelungsimpulses
cking (0.5s Default, max. 3s)	Eine Änderung muss mit der Schaltfläche "submit" bestätigt werden.
Time between Locking Cycles (2s Default, max. 10s)	Zeitdauer, die zwischen den Ver- und Entriegelungsimpulsen gewartet wird, wenn im Ablauf der automatischen Verriege- lungsoption Fehler auftreten.
	Eine Änderung muss mit der Schaltfläche "submit" bestätigt werden.
Register Enable Charging	Dieses Feld entspricht dem Register R10. Mit der Einstellung "enable" wird der Ladevorgang freigegeben, wenn diese Option über den DIP-Schalter D10 ausgewählt wurde.
	Eine Änderung muss mit der Schaltfläche "submit" bestätigt werden.
Register Enable Digital Communication	In diesem Feld wird die Funktion "Digitale Kommunikation" ausgewählt. Diese Auswahl entspricht der Einstellung "Dig" am BCD-Schalter.
	Eine Änderung muss mit der Schaltfläche "submit" bestätigt werden.
Register External Re- lease, EVSE available	Dieses Feld entspricht dem digitalen Eingang XR "External Release" und ist mit diesem logisch ODER-verknüpft. Steht dieses Feld auf "enabled" ODER ist der digitale Eingang XR auf dem High-Pegel, wird das System freigegeben.
	Eine Änderung muss mit der Schaltfläche "submit" bestätigt werden.

8.4 **Reiter Network**

Um die Änderungen sicher zu übertragen, muss die Bestätigung durch Drücken der "submit"-Schaltfläche innerhalb des Abfragezyklus (10 Sekunden) erfolgen. Ansonsten wird auf die ursprünglich gespeicherten Werte zurückgegriffen.

Parameter	Beschreibung
MAC Address	MAC Adresse des Gerätes. Die MAC-Adresse ist fest einge- stellt, eindeutig und kann nicht geändert werden.
IP Address Assignment (Static/DHCP)	Dieses Feld ermöglicht die Auswahl zwischen einer festen IP- Adresse und einer DHCP-Anfrage.
	Steht dieses Feld auf "disabled", kann die feste IP-Adresse in- klusive Subnetmask und Standard Gateway eingestellt werden.
	Steht dieses Feld auf "enabled", wird die DHCP-Anfrage ausge- führt. Ist ein DHCP-Server im Netzwerk vorhanden, wird dem Gerät eine IP-Adresse zugewiesen. Ist zusätzlich ein DNS-Ser- ver im Netzwerk vorhanden, kann auf das Gerät über den Gerä- tenamen zugegriffen werden.
	Ist kein DHCP-Server vorhanden, bleibt die fest eingestellt IP- Adresse aktiv.
	Eine Änderung muss mit der Schaltfläche "submit" bestätigt werden.
IP Address	Hier können Sie die IP-Adresse des Gerätes einstellen, die be- nutzt wird, wenn kein DHCP-Service aktiv ist.
	Eine Änderung muss mit der Schaltfläche "submit" bestätigt werden.
Subnetmask	Hier können Sie die Subnetzmaske des Gerätes einstellen wer- den, die benutzt wird, wenn kein DHCP-Service aktiv ist.
	Eine Änderung muss mit der Schaltfläche "submit" bestätigt werden.
Standard Gateway	Hier können Sie die IP-Adresse des Standard Gateway einstel- Ien werden, die benutzt wird, wenn kein DHCP-Service aktiv ist.
	Eine Änderung muss mit der Schaltfläche "submit" bestätigt werden.
Device Name	Über den Gerätenamen können Sie auf das System zugreifen, wenn ein DNS-Server im Netzwerk den Namen auflösen kann.
	Eine Änderung muss mit der Schaltfläche "submit" bestätigt werden.
Serial Number	Die Seriennummer des Gerätes ist fest eingestellt, eindeutig und kann nicht geändert werden.

EV Charge Control

9 Modbus-Beschreibung

Sie können über Modbus auf die Register des Gerätes zugreifen. Das Gerät arbeitet als Modbus-Slave mit der Adresse 180. Es wartet am Port 502 auf eingehende Modbus/TCP-Anfragen.

9.1 Registerarten

Modbus ermöglicht vier Registerarten, die wie folgt benutzt werden.

Modbus-Registerart	Wert	Zugriff
Input	16 Bit	Lesen
Discrete	1 Bit	Lesen
Holding	16 Bit	Lesen / Schreiben
Coils	1 Bit	Lesen / Schreiben

i

Sie können mehrere "Input" und "Holding" Register zusammenfassen, um 32-bit Daten zu übertragen. Die Codierung für solche Daten ist little endian, d.h. das Wort mit dem kleinstwertigen Element wird zuerst genannt.

9.2 Registerzuordnung

Die folgende Tabelle zeigt, wie die Geräteregister Registern zugeordnet werden, die über Modbus erreichbar sind.

Nummer	Тур	Adresse	Wert	Zugriff	Funktion	Codierung
R1	Input	100	16 Bit	Lesen	EV-Status	ASCII (8 Bit), A F
R2		101	16 Bit	Lesen	Proximity Ladestrom	Integer, Ampere
R15		102	32 Bit	Lesen	Ladezeit	Integer, Sekunden
		103				
R16		104	32 Bit	Lesen	DIP-Schalter Konfiguration	Binär, DIP 1 = LSB Jeder Schalter entspricht einem Bit.
R18		105	32 Bit	Lesen	Firmware Version	Dezimal, z. B. 0.4.30 = 430
		106				FW[0] = 0; FW[1] = 4; FW[2] = 22;
						FW[2]+FW[1]*100+ FW[0]*10.000
R35		107	16 Bit	Lesen	Fehlercodes	 Hexadezimal Bit Fehler 1. Kabelabweisung 13 A und 20 A 2. Kabelabweisung 13 A 3. Ungültiger PP Wert 4. Ungültiger CP Wert 5. State F wegen fehlen- der Verfügbarkeit der Ladestation 6. Verriegelung 7. Entriegelung 8. LD ist während Verrie- gelung weggefallen
R4	Discrete	200	1 Bit	Lesen	Digitaler Eingang EN (Enable)	1 Bit
R5		201	1 Bit	Lesen	Digitaler Eingang XR (External Release)	1 Bit
R6		202	1 Bit	Lesen	Digitaler Eingang LD (Lock Detection)	1 Bit
R7		203	1 Bit	Lesen	Digitaler Eingang ML (Manual Lock)	1 Bit
R8		204	1 Bit	Lesen	Digitaler Ausgang CR (Charger Ready)	1 Bit
R9]	205	1 Bit	Lesen	Digitaler Ausgang LR (Locking Request)	1 Bit
R12]	206	1 Bit	Lesen	Register EN (Enable System)	1 Bit
R13		207	1 Bit	Lesen	Register DIG (Digital Communication)	1 Bit

Modbus-Beschreibung

Nummer []	Тур	Adresse	Wert	Zugriff	Funktion	Codierung
R3	Holding	300	1x16 Bit	Lesen / Schreiben	Tatsächlicher Ladestrom	Integer, 6 80 Ampere
R20		301	3x16 Bit	Lesen	MAC-Adresse	Hexadezimal
		302				z. B. 00:A0:45:66:4F:40
		303				0X00A0 0X4566 0X4F40
R21		304	6x16 Bit	Lesen	Seriennummer	ASCII, character hex coded
		305				z. B. EVCC10000041
		306				0X4556 0X4343 0X3130
		307				
		308				0X3030 0X3030 0X3431
		309				
R26	310	5x16 Bit	Lesen / Schreiben	Gerätename	ASCII, character hex coded	
	311	-			z. B. STATION123	
		312	_			0X5354 0X4154 0X494F
		313	-			0X4E31 0X3233
		314				Des state Zeisban darf keine
						Zahl sein.
R23		315	4x16 Bit	Lesen /	IP-Adresse	Dezimal
		316		Schreiben		z. B. 192.168.0.8
		317				102.168.0.8
		318				192 108 0 8
R24		319	4x16 Bit	Lesen /	Subnetzmaske	Dezimal
		320		Schreiben		z. B. 255.255.255.0
		321				255 255 255 0
		322				200 200 200 0
R25		323	4x16 Bit	Lesen /	Gateway	Dezimal
		324	4	Schreiben		z. B. 192.168.0.1
		325				192 168 0 1
		326				

EV Charge Control

Nummer []	Typ	Adresse	Wert	Zuariff	Funktion	Codierung
R10	Coils	400	1 Bit	Lesen / Schreiben	Ladevorgang ermöglichen	1 Bit
R11		401	1 Bit	Lesen / Schreiben	Anfrage digitale Kommunikation	1 Bit
R14		402	1 Bit	Lesen / Schreiben	Ladestation verfügbar	1 Bit
R17		403	1 Bit	Lesen / Schreiben	Manuelle Verriegelung	1 Bit
R22		404	1 Bit	Lesen / Schreiben	DHCP ein-/ausschalten	1 Bit (Nach dem Umstellen kann es bis zu 10 s dauern, bis das System wieder er- reichbar ist.)
R44		405	1 Bit	Lesen / Schreiben	Output 1 ¹	1 Bit
R45		406	1 Bit	Lesen / Schreiben	Output 2 ¹	1 Bit
R46		407	1 Bit	Lesen / Schreiben	Output 3 ¹	1 Bit
R47		408	1 Bit	Lesen / Schreiben	Output 4 ¹	1 Bit

Setzt oder löscht den digitalen Ausgang, wenn dies im Webserver so eingestellt wurde (siehe "Reiter Status" auf Seite 70).

10 Verzeichnisanhang

101 Abbildungsverzeichnis

Kapitel 2			
	Bild 2-1:	Funktionselemente	13
	Bild 2-2:	Prinzipaufbau	18
Kapitel 3			
	Bild 3-1:	Abmessungen	19
	Bild 3-2:	Montage	20
Kapitel 4			
	Bild 4-1:	Beschaltung Proximity Plug	21
	Bild 4-2:	Beschaltung ControlPilot	22
	Bild 4-3:	Steckbares Ladekabel - Case B	24
	Bild 4-4:	Fest angeschlossenes Ladekabel - Case C	24
	Bild 4-5:	Typischer Signalverlauf	25
	Bild 4-6:	Beschaltung Simplified ControlPilot	26
Kapitel 5			
	Bild 5-1:	Transistorbeschaltung der Ausgänge	27
	Bild 5-2:	Ausgangsbeschaltung mit Lampen	28
	Bild 5-3:	Ausgangsbeschaltung mit LEDs	28
	Bild 5-4:	Zuordnung der logischen Zustände zu den Spannungen	29
	Bild 5-5:	Beschaltung der digitalen Eingänge	29
	Bild 5-6:	Eingänge an Schaltern mit interner Versorgung	30
	Bild 5-7:	Eingänge an Schaltern mit externer Versorgung	30
Kapitel 6			
	Bild 6-1:	Ladevorgang mit Freigabe über digitalen Eingang EN	32
	Bild 6-2:	Ladevorgang mit Freigabe über Register R10	33
	Bild 6-3:	Automatischer Ladevorgang mit Abfrage der Stromtragfähigkeit des Steckers / Kabels	34
	Bild 6-4:	Ladevorgang mit Steckerverriegelung	35

Bild 6-5:	Ladevorgang mit Steckerverriegelung und Verriegelungsrückmeldung
Bild 6-6:	Ladevorgang mit Steckerverriegelung und Verriegelungsrückmeldung37
Bild 6-7:	Ladevorgang mit Steckerverriegelung, Verriegelungsrückmeldung und externer Freigabe
Bild 6-8:	Ladevorgang mit Steckerverriegelung und Verriegelungsrückmeldung
Bild 6-9:	Ladevorgang mit Steckerverriegelung, Verriegelungsrückmeldung und externer Freigabe40

Kapitel 7

Bild 7-1:	Ladeablauf 1	. 41
Bild 7-2:	Ladeablauf 2	. 43
Bild 7-3:	Ladeablauf 3	. 45
Bild 7-4:	Ladeablauf 4	. 47
Bild 7-5:	Ladeablauf 5	. 49
Bild 7-6:	Ladeablauf 6	. 51
Bild 7-7:	Ladeablauf 7	. 54
Bild 7-8:	Ladeablauf 8	. 56
Bild 7-9:	Ladeablauf 9	. 58
Bild 7-10:	Ladeablauf 10	. 61
Bild 7-11:	Ladeablauf 11	. 64

Kapitel 8

Bild 8-1:	Netzwerkverbindungen	. 67
Bild 8-2:	Status LAN-Verbindung	. 68
Bild 8-3:	Eigenschaften LAN-Verbindung	. 68
Bild 8-4:	Eigenschaften Internetprotokoll	. 69
Bild 8-5:	Zugriff über Browser	. 69
Bild 8-6:	Weboberfläche "Status"	. 70
Bild 8-7:	Weboberfläche "Configuration"	.74
Bild 8-8:	Weboberfläche "Network"	. 76